COGNITION-COMPATIBLE NETWORK SUBSTRATE AND MEMORY-NATIVE PROTOCOL
STACK

RELATED APPLICATION DATA

[0001] This application claims the benefit of priority of U.S. Provisional Patent Application
Serial No. 63/726,519, filed on November 30, 2024, titled “Adaptive Network Framework (ANF) for
Modular, Dynamic, and Decentralized systems”, U.S. Provisional Application Serial No.
63/787,082, filed on April 11, 2025, titled “AQ (Adaptive Query): A Programming Language and
Cognitive Execution Layer for Distributed, Stateful AI”, U.S. Provisional Application Serial No.
63/789,967, filed on April 16, 2025, titled “Cross-Domain Applications of the Adaptive Query
Framework™, U.S. Provisional Patent Application Serial No. 63/800,515, filed on May 6, 2025, titled
“Cognition-Native Semantic Execution Platform for Distributed, Stateful, and Ethically-Constrained

Agent Systems”, each of which is incorporated by reference herein in its entirety.

FIELD
[0002] The present disclosure generally relates to distributed computing systems and network
protocols. In particular, the present disclosure is directed to a cognition-compatible network

substrate, memory-native protocol stack and systems and methods thereof.

BACKGROUND

[0003] Conventional network architectures, including TCP/IP, DNS, REST APIs, and content
distribution networks, are designed for stateless packet transmission, treating data as transient and
relying on external layers for session continuity, trust evaluation, and policy enforcement. Routing
and indexing systems in these architectures are typically centralized, static, and address-based,
limiting their ability to support adaptive behavior, decentralized trust management, or dynamic
semantic coordination. As distributed systems evolve to require greater autonomy, semantic
awareness, and policy-driven mutation control—particularly in domains such as decentralized
artificial intelligence, federated knowledge networks, Internet of Things (IoT), and interplanetary
communication—existing architectures impose significant constraints. Accordingly, there is a need

for systems and methods that address these shortcomings.

SUMMARY OF THE DISCLOSURE

[0004] A computer-implemented system for memory-native protocol execution having a
plurality of agents, wherein each of the plurality of agents includes a unique identifier, a payload, a
memory field, a transport header, and a cryptographic signature, a plurality of distributed nodes,

1 Attorney Docket No. 20596-004USU1



wherein each of the plurality of distributed nodes is configured to transmit and receive any of the
plurality of agents, and a modular protocol stack, wherein the modular protocol stack is configured
to be executed at each of the plurality of distributed nodes, and wherein the modular protocol stack
includes a routing layer, an indexing layer, and a consensus layer. Behavior within the system of the
routing layer, the indexing layer, and the consensus layer is determined by metadata embedded
within a received respective one of the plurality of agents. The memory field of each of the plurality
of agents includes verifiable lineage, access logs, and policy references, and the verifiable lineage,
the access logs, and the policy references include sets of instructions configured to govern routing,

mutation, and consensus behavior for the corresponding one of the plurality of agents.

[0005] A computer-implemented method for distributed memory-native communication that
includes receiving an agent at a node, the agent comprising a unique identifier, an access log, a
payload, a memory field, a transport header, and a signature, verifying the signature of the agent and
parsing the transport header and the memory field, determining routing eligibility and mutation
scope of the agent by evaluating the access log and policy references of the agent, executing one or
more protocol stack layers based on content contained in the memory field, appending a trace log to
the memory field, and forwarding, after appending the trace log, the agent to one or more eligible
nodes, wherein the one or more eligible nodes is determined by assessing dynamic routing protocol

and one or more memory field constraints, for mutation execution or resolution.

BRIEF DESCRIPTION OF THE DRAWINGS
[0006] For the purpose of illustrating the disclosure, the drawings show aspects of one or more
embodiments of the disclosure. However, it should be understood that the present disclosure is not

limited to the precise arrangements and instrumentalities shown in the drawings, wherein:

FIG. 1 schematically depicts a distributed, trust-scoped execution network exchanging agents across

heterogeneous nodes in accordance with an embodiment of the present disclosure;

FIG. 2 is a schematic overview of an internal structure of an agent, including its UID, semantic
payload, transport header, append-only memory field, and cryptographic signature in accordance

with an embodiment of the present disclosure;

FIG. 3 is a schematic depiction of a layered execution stack that may be used to process agents in

accordance with an embodiment of the present disclosure;

2 Attorney Docket No. 20596-004USU1



FIG. 4 illustrates a network routing layer and a process for evaluating candidates based on agent
access logs, trust graph history, policy alignment, and network health feedback in accordance with

an embodiment of the present disclosure;

FIGS. 5A and 5B outlines processes for entropy-triggered semantic index restructuring in

accordance with an embodiment of the present disclosure;

FIG. 6 outlines a technique for processing a mutation proposal through trust-weighted voting by a

governance layer in accordance with an embodiment of the present disclosure;

FIG. 7 is a schematic diagram depicting an exemplary process by which incoming health agents

from trusted nodes influence protocol behavior;

FIG. 8 is a schematic depiction of agent routing among candidate nodes, in which selection is based

on memory-derived trust scores in accordance with an embodiment of the present disclosure;

FIG. 9 illustrates schematically a system and process for alias resolution and access validation in

accordance with an embodiment of the present disclosure; and

FIGS. 10A and 10B are map-style views of a federated network that includes semantic zones, trust
boundaries, node stack capabilities, and agent routing paths in accordance with an embodiment of

the present disclosure.

DETAILED DESCRIPTION

1. Overview

[0007] Current systems are not optimized for embedding memory or governance context within
the data itself, nor for supporting runtime mutation validation, adaptive routing based on trust, or
semantic self-restructuring. A network substrate is disclosed in which the primary unit of protocol
execution is a memory-bearing agent. Unlike conventional network architectures, which treat data
packets as stateless and transient, this system embeds persistent, verifiable memory directly within
each object, enabling the network to operate as a stateful, protocol-native computation substrate.
Each agent comprises a unique identifier, a payload, a memory field containing lineage and access
history, a transport header encoding delivery constraints, and a cryptographic signature. These
agents do not merely carry data; they govern their own routing, mutation eligibility, and consensus

behavior based on their accumulated memory and embedded policy references.

3 Attorney Docket No. 20596-004USU1



[0008] The network substrate operates through a horizontally composable protocol stack that
may include routing, indexing, caching, and consensus layers. Each layer is memory-aware and
interprets the agent deterministically, based on local context and verifiable agent-resident state. No
reliance on external session management, centralized controllers, or pre-configured address registries
is required. Instead, emergent behavior arises from the interaction of memory-bearing agents and

deterministic, composable protocols.

[0009] This memory-native approach enables the substrate to support semantic evolution,
context-sensitive routing, dynamic mutation validation, and behaviorally scoped access control
across asynchronous, disconnected, or federated environments. The substrate may be implemented
atop legacy transport layers including TCP/IP, HTTP, WebRTC, or delay-tolerant mesh
architectures, and may be deployed incrementally in environments ranging from edge devices to
interplanetary networks. While the system may integrate with structurally governed containers such
as adaptive indexes or cognition-layer semantic agents, it functions independently of any specific
structural or cognitive framework. This allows for deployment as a general-purpose execution and
communication substrate for any environment requiring verifiable state continuity, adaptive routing,

or semantic governance at the protocol level.

[0010] In systems where cognition-compatible execution layers are implemented above this
substrate, such as those described in U.S. Nonprovisional Patent Application No. 17/888,001, titled
“Cognition-Native Semantic Execution Platform for Distributed, Stateful, and Ethically-Constrained
Agent Systems,” filed June 6, 2025 and incorporated by reference for that subject matter, the
platform can support the propagation of persistent semantic agents that perform long-horizon
reasoning tasks, including memory-resident adaptive queries that evolve across decentralized

environments.

[0011] FIG. 1 illustrates a cognition-compatible execution network comprising multiple
distributed nodes exchanging memory-bearing agents over a modular protocol stack. At a first stage,
an agent A (110) is instantiated with a unique identifier (UID: A-001), trust scope metadata (e.g.,
Zone EU), and an initial memory trace (Trace 0). The agent enters Node A (120), which performs
an initial read of the embedded memory field (121) to retrieve execution lineage and trust scope
parameters. Based on these parameters, Node A uses a dynamic routing protocol (DRP, 122) to
compute route scoring using trust-weighted evaluation logic and forwards the agent to the next

optimal node.

4 Attorney Docket No. 20596-004USU1



[0012] At Node B (130), the execution layers respond to memory and transport metadata (131)
as a semantic divergence is detected—manifested as an entropy spike in the agent’s contextual
signal. In response, the dynamic indexing protocol (DIP, 132) within Node B triggers a reindexing
operation and proposes a structural mutation (133) to the agent’s schema. This mutation is appended
as a provisional memory update and marked with a flag indicating pending consensus validation.

The agent is routed to Node C (140), a designated consensus node.

[0013] At Node C, the mutation proposal 133 is evaluated against local policy constraints and
memory-scoped quorum rules. Using an adaptive consensus protocol (ACP, 141), Node C issues a
consensus response to the mutation proposal (142) based on trust-weighted policy evaluation,
appending an execution trace that records quorum participation, mutation type, and consensus result.
The agent may spawn child agents that are routed to participating nodes to achieve quorum. Upon
achieving quorum—based on trust-weighted votes collected from participating nodes—the updated
agent, including its modified structure and accumulated trace, is propagated to Node D (150), the

final execution node.

[0014] Node D finalizes the mutation execution by committing the approved structural changes
to the agent’s memory field, logging the result locally, and appending a terminal trace entry (151)
confirming successful propagation. The agent now includes a complete memory lineage across the
trust-scoped execution path: The agent may spawn child agents that are routed to participating nodes

to update index maps.

[0015] Trace 1 (161) denotes successful routing via Node A; Trace 2 (162) logs the mutation
proposal and entropy signal at Node B; and Trace 3 (163) records consensus approval at Node C.
Each node interacts with the agent through a layered protocol interface encompassing routing,
indexing, and consensus, and a semantic memory interpreter. Arrows 170a—170g indicate protocol-
executed process flows rather than direct hardware links. The system operates without centralized
orchestration, relying instead on embedded memory, cryptographically validated policy references,

and trust-scoped semantic coordination.

[0016] The network substrate is cognition-compatible not because it performs cognition, but
because it retains state, interprets accumulated experience, and enables dynamic, policy-governed
behavior at runtime. It supports systems that learn, restructure, and adapt—not through Al models,

but through memory continuity and protocol determinism embedded in the data itself.

5 Attorney Docket No. 20596-004USU1



2. Agent Structure and Role in Protocol Execution

[0017] In the disclosed system, the agent is the unit of transmission, execution, and memory
continuity. Unlike traditional network packets or opaque payload objects, each agent in this
architecture is a cryptographically self-contained operand. Its structure includes a unique identifier
(UID), a semantic payload, a transport header, a memory field, and a digital signature. These fields
are not merely metadata—they govern the behavior of the protocol stack as the agent traverses a

distributed network of nodes.

[0018] The UID allows each agent to be tracked across its lifecycle and ensures uniqueness
within the substrate. The payload may contain arbitrary semantic data—such as executable code,
structured knowledge, or query logic—and is interpreted according to the agent’s declared semantic
class and execution context. The transport header specifies routing and propagation constraints
including time-to-live, trust radius, and scope-limited delivery paths. This allows for deterministic

delivery behavior that aligns with system policies and network health conditions.

[0019] In addition, each agent includes a memory field. This field contains a signed lineage
record, access logs, and references to policy agents that define permissions for mutation, routing, or
consensus participation for the agent. The memory field also optionally includes trace outcomes,
feedback signals, and prior decisions made during the agent’s execution. This field enables the agent
to carry its own history, behavioral context, and trust evaluation criteria into every node it contacts.
As a result, the agent governs its own execution path without reliance on session tokens, external

state stores, or centralized routing controllers.

[0020] The cryptographic signature ensures that any modification to the agent structure—
including changes to the memory field—is verifiable. Each agent includes a digital signature
computed over a canonical serialization of its UID, payload, memory field, and transport header,
signed using the private key of the originating node. Upon receipt, the executing node re-serializes
the agent content and validates the signature using the sender’s public key. If validation fails, the
agent is rejected by the protocol stack’s validation layer, which discards the agent and logs the
rejection outcome locally. This protects against mutation forgery, routing tampering, and

unauthorized policy overrides.

[0021] By embedding governance logic directly into the data object, i.e., the agents, the agents

become protocol-native carriers of executable context. Each layer of the protocol stack—whether

6 Attorney Docket No. 20596-004USU1



routing, indexing, or consensus—consults the memory field before acting. The result is a network in
which the data itself initiates and constrains its journey, enforcing trust alignment and behavioral

determinism at runtime.

[0022] FIG. 2 illustrates an example of internal architecture of an agent 200 configured for
cognition-native network execution. Agent 200 includes a globally unique identifier (UID 210) that
anchors identity across memory, transport, and policy layers. The UID serves as the cryptographic

root for mutation lineage, identity continuity, and execution traceability.

[0023] Attached to the UID is a semantic payload (220), which may contain intent statements,
structured logic, object references, or planning directives. The payload is designed to be interpreted
by distributed protocol layers and may evolve through mutation, refinement, or recursion in response

to embedded memory and policy logic.

[0024] A memory field (230) is maintained as an append-only record of trace outcomes, access
logs, entropy signals, and mutation lineage. Each entry in memory field 230 is signed by the
contributing node and linked via hash chaining, enabling time-ordered auditability across trust zones.
Adjacent to the memory field is a policy reference block (240), which encodes canonical references
or embedded stubs to governing policy agents. These policies define access constraints, mutation

eligibility, and role enforcement logic, and are validated at runtime via local or cached resolution.

[0025] A transport header (250) encapsulates runtime metadata including trust scope, latency
sensitivity, quorum priority, and alias identifiers, as outlined in process 900 in FIG. 9, when an agent
is received at step 902 by the transport header (910) contains a semantic alias—such as
“contracts.latest.risk” —this alias must be resolved to a canonical identifier using a dynamic alias
system (DAS. 920). Resolution occurs against a zone-local alias table scoped to the agent’s declared

trust domain (e.g., Zone B), using a pointer embedded in the transport field or memory reference.

[0026] Following alias resolution, the node retrieves a policy reference from the memory
field—e.g., policy.read.risk legal-—and evaluates it using locally cached policy and access control
protocol (PACP) rules (930). The result of this evaluation determines whether access, mutation, or
routing is permitted under the current trust and context scope. Upon successful validation, the node
appends a trace entry to the agent memory, recording the alias resolution result and policy

enforcement decision (940).

7 Attorney Docket No. 20596-004USU1



[0027] To ensure semantic integrity, agent fields—such as UID, payload, memory, policy
reference, and transport metadata—may be cryptographically hashed and signed into a scoped
signature block (260). Signature validation occurs at each node to confirm authenticity, continuity,

and semantic alignment before execution or propagation is permitted.

[0028] This architectural decision—treating data as a memory-bearing agent of protocol
execution—enables the network to shift from packet-switched statelessness to cognition-compatible
stateful behavior. The agent does not just carry information; it participates in its own delivery,

mutation, and governance.
3. Memory Field Functionality and Semantic Context Awareness

[0029] The memory field within each agent functions as the persistent context layer through
which the network infers, constrains, and governs behavior of the agents. This field contains
cryptographically signed records representing the agent’s mutation lineage, access log, and policy
references. These records act as governing constraints that influence the agent’s behavior during
protocol execution. The memory field transforms each agent into a state-aware, context-bearing

object capable of enforcing its own routing limits, execution eligibility, and mutation permissions.

[0030] The mutation lineage entry is a sequential record of structural changes the agent has
undergone, including prior governing zones, proposed or accepted mutations, and their associated
policy references. This lineage is used by consensus nodes to evaluate whether a proposed mutation
is allowed under the currently active policy and whether the agent’s current state is derivable from a
trusted origin. This provides a substrate-level defense against unauthorized forking, out-of-scope

overrides, or stale mutation replays.

[0031] The access log tracks node interactions, including read, write, and execution events,
along with associated timestamps and trust metadata. This log enables routing decisions based on
historical behavior. For instance, if a node repeatedly mishandles agents from a given semantic class,
that pattern may be encoded into the trust model of future agents, allowing the routing layer to

suppress or penalize propagation in that direction.

[0032] Policy references stored in the memory field point to specific policy agents—
autonomous semantic objects that encode governance rules, mutation eligibility criteria, and quorum

thresholds. These references may be resolved by alias (e.g., via the alias resolution systems and

8 Attorney Docket No. 20596-004USU1



methods disclosed in U.S. Patent Application No. 19/326,036, titled “Adaptive Network Framework
For Modular, Dynamic, and Decentralized Systems” filed September 11, 2025, which is
incorporated by reference for such disclosures) or embedded directly as canonical identifiers. The
referenced policy agent specifies which entities may mutate the agent, what quorum structures must
be satisfied, and which semantic behaviors are permitted during execution. This allows protocol
layers, such as routing or consensus, to evaluate authority locally using only the agent’s embedded
memory, without requiring external session verification or off-chain lookup. The use of embedded
policy also enables secure operation in disconnected or intermittently connected networks, such as

IoT or interplanetary systems

[0033] Agents may also append semantic traces to the memory field as they traverse the
network. These traces include both local decisions (e.g., routing outcomes or rejection causes) and
network-wide feedback (e.g., system health, cache status, propagation entropy). Such data is

referenced by other nodes to inform routing, consensus participation, and mutation priority.

[0034] As illustrated in FIG. 2, each agent 200 includes an append-only memory field (230) that
governs how the agent is routed, validated, and mutated across distributed trust zones. The memory
field contains a layered structure of execution traces, lineage entries, entropy signals, and policy
references. These embedded elements inform behavior at multiple protocol layers—including trust-

scoped routing decisions, semantic indexing, and quorum participation in consensus decisions.

[0035] Each memory trace captures the execution context of a prior node, including success or
failure of mutation proposals, policy resolution outcomes, and semantic divergence events. Each
trace entry is individually signed by the node that generated it, using that node’s private key. These
signatures ensure trace integrity and non-repudiation and are chained using cryptographic hashes to
preserve both auditability and chronological ordering. In doing so, the memory field acts not merely
as a static log, but as an active driver of semantic context, policy enforcement, and downstream

decision-making.

[0036] FIG. 6 provides an overview of an exemplary memory-driven consensus workflow 600.
In this example, Agent A proposes a mutation to add an alias to a semantic index (610). The agent’s
memory field includes a policy reference (policy.alias.admin), a lineage pointer to its originating

agent A-038, and a quorum type descriptor indicating a weighted trust graph.

9 Attorney Docket No. 20596-004USU1



[0037] Upon receiving the agent, the executing node validates the embedded policy reference
using a local or cached policy agent (620) and confirms the quorum logic encoded in the memory
field. If validation succeeds, the node initiates a scoped voting procedure (630) by evaluating two
criteria: (1) the trust path to the proposer, and (2) eligibility under the referenced policy. Each vote is
submitted as an agent bearing its own UID and trace and is weighted by the submitting node’s trust
score and domain scope (640). If validation fails—due to missing, expired, or unverifiable policy
references—the node may reject the agent, quarantine it for manual review, or append a failure trace
and return the agent to the proposer, depending on the node’s local policy and dynamic routing

precool (DRP) configuration.

[0038] Votes are accumulated locally or propagated via a dynamic routing protocol (DRP) to
other quorum participants deemed eligible based on the criteria specified by the referenced policy
agent—such criteria including trust path thresholds, semantic scope alignment, node role
authorization, or prior participation history (650). The quorum logic embedded in memory specifies
the voting threshold, such as a minimum of 3 out of 5 votes and a cumulative weight of at least 2.0.
Upon quorum resolution, a success or failure flag is appended to the initiating agent’s memory trace:
approval results in an appended confirmation (660), while rejection triggers either a recorded denial

or a semantic quarantine flag (670).

[0039] This process illustrates how memory fields not only document state, but also actively
structure policy enforcement, voting behavior, and propagation eligibility so that they function as

semantic substrates for cognition-native execution.

[0040] By making the memory field the authoritative source of trust, policy, and behavioral
context, the present invention displaces the need for centralized control, out-of-band trust
assignment, or hard coded protocol defaults. Each agent acts as a self-validating, self-constraining

operand, whose execution is determined by what it carries, not where it came from.
4. Protocol Stack Architecture and Horizontal Execution Model

[0041] A horizontally composable protocol stack is designed to interpret and act upon agents
based entirely on their internal structure and memory state. Unlike vertically integrated, centrally
orchestrated network stacks, this architecture consists of protocol layers that operate in parallel, each
consuming and acting upon data within the agent. These layers are designed to be modular, stateless

or memory-aware, and capable of re-composition depending on deployment context. This enables

10 Attorney Docket No. 20596-004USU1



the protocol stack to execute deterministically based on agent content without reliance on persistent

infrastructure or node-local session storage.

[0042] The protocol stack typically includes four layers: a dynamic routing protocol (DRP), a
dynamic indexing protocol (DIP), an adaptive consensus protocol (ACP), and a semantic memory
layer (SML). These layers may be implemented in whole or in part depending on node capabilities,
trust configuration, and deployment topology. FIG. 3 provides a layered overview of a protocol stack
process 300 and illustrates how incoming agents are processed concurrently across routing, indexing,

and consensus layers based on the constraints and memory references embedded in each agent.

[0043] At the base of the stack, a semantic memory layer (310) interprets the memory field
within each agent, extracting lineage, policy references, trust scores, and semantic tags. This layer
enables every subsequent module to operate as memory-informed logic. It serves as the entry point

to the semantic execution process, converting static data into active protocol operands.

[0044] A routing layer (320) uses this memory to inform path selection, trust scoring, and
propagation scope. Unlike traditional routing tables or address-based forwarding, DRP routes based
on an agent's embedded behavior, including access history and policy-aligned propagation
boundaries. This allows for trust-scoped routing, localized adaptation, and memory-native

suppression of unreliable paths.

[0045] An indexing layer (330) uses entropy thresholds and memory signals to determine
whether an agent (or additionally index, if implemented using an adaptive network framework, such
as those disclosed in U.S. Patent Application No. 19/326,036, titled “Adaptive Network Framework
For Modular, Dynamic, and Decentralized Systems” filed September 11, 2025, which is
incorporated by reference for such disclosures) should be inserted, split, merged, or reclassified. This
layer may be omitted in stateless deployments or implemented using DIP in environments integrated

with the Adaptive Network Framework (ANF) or similar structural substrates.

[0046] A consensus layer (340) processes any mutation proposals encoded in the agent’s
memory field. If present, the agent triggers trust-weighted voting under an adaptive consensus
protocol (ACP), wherein participating nodes evaluate the proposal using the policy agent linked in
the memory field. This layer ensures that structural or behavioral mutation occurs only under scope-

valid quorum conditions, even in the absence of external state persistence.

11 Attorney Docket No. 20596-004USU1



[0047] Each layer of the stack operates on agent-resident data and leaves a trace, which is
appended to the agent’s memory field upon execution (350). This trace is then used by downstream
nodes to validate or replay execution outcomes, supporting trust continuity and semantic audit. This
execution model enables protocol determinism and traceability, even across asynchronous or

intermittently connected systems.

[0048] The result is a network substrate that is horizontally composable, memory-driven, and
capable of enacting adaptive behavior directly from data structure. This protocol stack enables self-
organizing, policy-bound behavior across a range of deployment scenarios—from cognition-aware

Al systems to stateless edge networks—without requiring a monolithic governance layer.
5. Dynamic Routing Protocol (DRP) and Trust-Scope Message Flow

[0049] A dynamic routing protocol (DRP) is a memory-aware, behavior-sensitive routing layer
that interprets agents and directs their transmission based not on static addresses or hop-count
heuristics, but on trust scope, access history, policy constraints, and dynamic system health. DRP
allows routing decisions to be made at each node without maintaining global routing tables, relying

instead on the memory field embedded in each agent and local trust inference.

[0050] Upon receiving an agent, the node parses its transport header and memory field. The
transport header specifies propagation constraints such as time-to-live (TTL), trust radius, and
semantic class. These values determine the admissibility of the message at the current node and
influence whether the agent is processed, forwarded, cached, or discarded. These constraints may be
fixed or dynamically adjusted based on feedback from a network health monitoring system (NHMS),

as described below.

[0051] The DRP evaluates not only network topology but also trust-weighted behavioral signals
extracted from the agent’s memory field and transport metadata. Each time an agent arrives at a new
node, the DRP initiates a multi-stage evaluation procedure that parses the agent’s transport header
(250) and memory field (230), extracting access log entries, prior trace outcomes, and embedded
policy references. The node begins by evaluating the access log, identifying the most recent
execution history associated with neighboring nodes, including success rates, policy violation

frequency, and node responsiveness.

12 Attorney Docket No. 20596-004USU1



[0052] For example, in FIG. 4, an example of entropy-triggered semantic index restructuring
400 is outlined. In the case of an agent with a time-to-live (TTL) of 2 and scoped to Zone B (425),
as in 410, the DRP constructs a local trust graph (420) by referencing node-specific access records.
Node A is credited with successful execution of the last three agents, while Node B is penalized for
multiple policy rejections, and Node C is flagged for congestion reports and prior delivery failures.
The DRP optionally incorporates feedback from a network health monitoring system (NHMS, 430),
layering in runtime signals such as high-latency alerts or congestion warnings. For instance, Node C
is reported as “high latency,” while Node B is tagged with a “congestion risk” and Node A remains

in a “healthy” state.

[0053] The DRP next assigns dynamic trust scores to each routing candidate (440), integrating
both historical access results and NHMS feedback. These scores are weighted against policy-defined
thresholds—e.g., a minimum trust requirement of 0.60—and TTL costs. Node A receives a score of
0.92 (450), Node B scores 0.58 and is excluded due to falling below policy requirements, and
Node C receives 0.71 but is disqualified due to excessive TTL cost. The DRP selects Node A as the

optimal next-hop, appends the trust path to the agent’s memory trace, and initiates forwarding (450).

[0054] FIG. 8 provides an overview of agent routing among candidate nodes, in which selection
is based on memory-derived trust scores and provides further elaboration on how DRP compares
multiple candidates across a larger trust topology, integrating access history, semantic memory
alignment, and policy conformance into the final routing decision. In the illustrated scenario,
Node A (810) is identified as a direct path with a high trust score of 0.91, and a success history
across the last five agents, all of which fulfilled consensus or policy roles. Its memory profile is fully

aligned with the agent’s lineage, and it satisfies all active policy constraints, resulting in its selection.

[0055] Node B (820) is treated as a fallback option. Although it holds a relatively high trust
score of 0.86, its last three agents include one partial rejection. Memory alignment is acceptable, and
policy compliance is not disqualifying, but it is deprioritized relative to Node A. Node C (830) is
rejected due to a low trust score of 0.42, a track record of rejections and timeouts, and a memory
mismatch with the agent. Node D (840) is marked as ineligible, with a trust score of 0.00, TTL
expiration, and a trust scope misalignment with the agent. DRP enforcement logic ensures that

blocked zones and policy-incompatible nodes are categorically excluded from the routing graph.

13 Attorney Docket No. 20596-004USU1



[0056] Collectively, FIG. 4 and FIG. 8 provide an example of how DRP uses memory-anchored
behavioral signals—not just static topology—to compute adaptive, trust-weighted transmission paths

that align with the agent’s semantic identity, transport metadata, and policy obligations.

[0057] Rather than executing fixed pathfinding logic, DRP operates as a distributed decision
layer in which each node determines the optimal action for the agent based on a convergence of local
policy, system conditions, and historical trust feedback. This enables the network to suppress
unreliable or adversarial routes without requiring cryptographic exclusion, and to favor paths that
exhibit compliance with behavioral norms defined in policy references embedded in the agent

memory.

[0058] Agents may be marked as forwardable, suppressible, or urgent. These designations may
be set initially at the agent’s origin or updated by intermediate nodes based on feedback or
propagation failure. Agents that exceed TTL, violate scope boundaries, or fail trust scoring are
dropped or flagged for quarantine. These decisions and their justifications may be appended to the
agent memory trace, enabling future routing or consensus layers to evaluate the cause and pattern of

suppression.

[0059] The DRP layer also enables soft containment and semantic filtering at the edge. For
example, in a knowledge network where certain zones enforce topic or jurisdictional boundaries, the
DRP layer can prevent transmission of off-topic, stale, or mistrusted content from reaching core
consensus nodes. This ensures that routing not only reflects connectivity and capacity, but also

semantic alignment and governance scope.

[0060] The DRP transforms the network into a semantic transport layer governed not by
addresses, but by behavior. It enables dynamic, decentralized message flow that reflects the agent’s
purpose, history, and trust profile—supporting policy enforcement and adaptive behavior at the

substrate level.
6. Network Health Monitoring System (NHMS)

[0061] A Network Health Monitoring System (NHMS) is a protocol-layer service that enables
memory-native nodes to evaluate, report, and respond to network conditions in real time. Rather than
relying on out-of-band observability tools or external monitoring frameworks, the NHMS embeds

operational signals into the same memory-native substrate that governs mutation, routing, and

14 Attorney Docket No. 20596-004USU1



consensus. These signals are represented as agents—referred to as health agents—that propagate

through the network and influence future routing and mutation behavior.

[0062] Each node running the NHMS module evaluates a variety of local metrics, which may
include queue congestion, transmission failures, latency variance, semantic class entropy, quorum
instability, and cache pressure. When thresholds are crossed, the node emits a signed health agent
containing these observations. Health agents are routed using the same DRP logic described above,
and may be selectively propagated depending on urgency, scope, and semantic alignment with

recipient nodes.

[0063] A Node Health Monitoring System (Node HMS) operates as a distributed feedback
mechanism through which nodes share health-state observations, congestion signals, and entropy
divergence indicators. These observations are transmitted as dedicated health agents, which may be

evaluated, accepted, or acted upon based on local policy and trust parameters.

[0064] FIG. 7 illustrates an example of processing of an inbound health agent at a recipient
node. Upon receipt, the node identifies the source of the report—e.g., Node X, a recognized and
trusted peer (710)—and parses the health payload, which includes reported congestion level, latency
variance, and entropy signal values. In the illustrated case, Node X signals high congestion, rising
latency variability, and an entropy spike of 0.87. The incoming health agent also carries a memory
field that includes the origin trace and trust scope of the report, allowing the recipient to assess

whether the report is credible, scoped appropriately, and within actionable bounds.

[0065] The recipient node evaluates the health agent (720) against locally cached policies
governing routing, indexing, and quorum configuration. If the report aligns with those policies, the
node may take multiple actions. For example, it may update its DRP routing preferences (730),
deprioritizing the path to a now-congested peer, such as Node Y, and raise the trust threshold

required for future transmissions within the affected semantic class (750).

[0066] At the indexing layer, the node may trigger structural reclassification in response to
entropy divergence (740). In this scenario, the node invokes a dynamic indexing protocol (DIP)
restructuring operation, splitting the semantic class contracts.risk into a new index cluster, based on
the magnitude and locality of the entropy signal. This results in a re-indexing of related agents or

sub-classes, enabling routing to a more semantically coherent or healthier cluster.

15 Attorney Docket No. 20596-004USU1



[0067] Optionally, at step 760 the recipient may append the health agent’s data to the active
agent’s memory field, allowing downstream nodes to inherit health-state awareness as part of the
agent’s propagation. In all cases, the node also logs the policy-justified action to its local memory

graph, preserving traceability and semantic accountability for the decision.

[0068] As shown in FIG. 7, a Node HMS creates a closed-loop feedback structure wherein
nodes respond to health agents with local policy-bound adaptations to routing, consensus, and

indexing—without reliance on centralized control or global synchronization.

[0069] A Node HMS also affects dynamic indexing protocols (DIPs) and adaptive consensus
protocols (ACPs). In a DIP layer, entropy thresholds encoded in health agents may trigger index
splitting, reclassification, or re-indexing decisions (as described below). In an ACP layer, health-
derived trust volatility may influence voting eligibility or quorum thresholds, preventing unstable
nodes from unilaterally affecting structural mutation events. An adaptive consensus protocol (ACP)
may be dynamically adjusted. For example, the node may raise the required quorum threshold to 4
out of 5 participants or remove a previously trusted node from quorum eligibility due to health

instability.

[0070] Health agents are semantic objects like any other, containing a payload, memory field,
and signature. Their payload includes the observed metrics, encoded as structured data, and their

memory field includes provenance metadata, propagation scope, and trace references.

[0071] A Node HMS transforms network adaptability from an administrative function to a
protocol-native behavior. It enables decentralized reactivity to real-time conditions without central
control, external dashboards, or global synchronization. The result is a substrate that can reroute,
reorganize, or quarantine itself based on the lived experience of its own memory and the feedback of

its neighbors—supporting cognition-compatible resilience and self-regulation.
7. Dynamic Indexing Protocol (DIP)

[0072] A dynamic indexing protocol (DIP) is an optional, pluggable indexing layer within the
memory-native protocol stack. Its purpose is to provide structural organization of agents based on
entropy, semantic class, and lineage density. DIP does not impose global containers or structural
hierarchies, but rather operates as an adaptive, memory-informed indexing mechanism that enables

local organization and reclassification of data flows in high-entropy or semantically fragmented

16 Attorney Docket No. 20596-004USU1



environments, such as those described in U.S. Nonprovisional Patent Application No. 19/326,036,
titled “Adaptive Network Framework for Modular, Dynamic, and Decentralized Systems,” filed

September 11, 2025 and incorporated by reference for such disclosure.

[0073] DIP governs structural adaptation of the semantic namespace in response to observed
mutation patterns, access volatility, and memory-derived policy divergence. Each DIP-enabled node
evaluates incoming agents to detect entropy thresholds, semantic divergence, or governance

heterogeneity that would warrant local reclassification, trace merging, or index restructuring.

[0074] As illustrated in an example in FIG. 5A, a node receiving a sequence of agents classified
under wikipedia.history.* (510)—including articles on “World War I, “Napoleon”, and “Civil
Rights Act”—may detect elevated mutation frequency and rapidly expanding access logs. If this
mutation density exceeds a predefined entropy threshold, the node initiates an index split operation
(520), subdividing the original class into semantically distinct subcategories: e.g.,
wikipedia.history.modern and wikipedia.history.ancient. These class boundaries are derived from
agent payloads, memory traces, and policy references, and may be enforced locally without global

coordination.

[0075] Policy-driven divergence further informs index restructuring. For example, if agents in
the original wikipedia.history class begin to include conflicting sourcing standards or governance
metadata, DIP may split the class to reduce policy contention and promote quorum stability. System
health signals emitted by local NHMS modules operating at individual nodes (530) may increase
mutation sensitivity or lower the threshold for reclassification. These node-level signals, when
propagated across the substrate, contribute to network-wide feedback loops that adapt DIP behavior

in response to entropy surges or unstable semantic clustering.

[0076] In one scenario, a dense cluster of agents related to the Civil Rights era triggers a
focused reclassification operation. The node detects frequent cross-referencing among agents tagged
with civil_rights, along with sustained access volume and semantic coherence. As a result, DIP
elevates the topic to its own index class: wikipedia.history.civil rights (540), reducing cognitive and

routing overhead for future queries within that domain.

[0077] DIP also supports trace merging, where semantically adjacent but administratively
divergent classes are unified under a common parent index. For example, the node may detect

sustained overlap between the classes wikipedia.law.civil and wikipedia.history.legal. Based on

17 Attorney Docket No. 20596-004USU1



observed co-access patterns and shared mutation history, the node merges these classes into a new
indexed category: wikipedia.policy.civil (550). All actions are triggered by local observations and
justified by agent memory references and embedded policy constraints, without reliance on

centralized indexing authorities.

[0078] As shown in FIG. 5A, DIP enables memory-native index restructuring as a semantic
response to evolving class density, policy divergence, and entropy patterns—supporting dynamic

knowledge management within decentralized execution environments.

[0079] As further illustrated in FIG. 5B, DIP also operates entirely within the substrate layer,
independently of semantic aliasing or a DAS mapping. In this example, a node receives a sequence
of agents identified only by UID—e.g., A-038, A-044, and A-057 (560)—each carrying memory
traces that exhibit elevated entropy deltas between successive mutations, conflicting policy
references, and a shared lineage origin from UID A-001. These agents lack semantic alias tags or

external content identifiers.

[0080] The local DIP module evaluates the agents” memory fields, including their trust scope
(Zone_C), lineage traces, and prior quorum paths (570). When the observed entropy divergence
exceeds a configured threshold (e.g., A > 0.82), the node initiates a structural reclassification event
(580), segmenting the lineage graph into two local index anchors. Agents A-038 and A-044 are
clustered into INDEX A, while A-057 is placed into INDEX B. This restructuring at 590 is based

on lineage structure, mutation history, and entropy-detected semantic drift.

[0081] No alias resolution occurs, and no DAS is invoked as noted in step 594. The
classification anchors are not persistent categories but are soft index points used to localize
processing and improve routing behavior. If an ACP is enabled, the reindexing may optionally be
validated at 592 through a scoped quorum. Whether or not ACP is invoked, the initiating node
appends a trace anchor to the memory field of affected agents and logs the event in its local memory

graph.

[0082] FIG. 5B illustrates an example of DIP’s capacity to restructure semantic execution
contexts purely on the basis of identity-native lineage and memory evolution, confirming that
indexing logic can function independently of high-level class structures or human-readable

taxonomies.

18 Attorney Docket No. 20596-004USU1



[0083] Each index formed by DIP is not a persistent structural container, but a soft-index anchor
defined by statistical and policy-aligned behavior. Indexes may be ephemeral or replicated,
depending on policy, quorum scope, or deployment objectives. Because DIP indexes are inferred
rather than imposed, they enable dynamic structure formation without violating substrate flatness or

stateless transport compatibility.

[0084] DIP relies on entropy calculations derived from semantic variation across agent
payloads, policy divergence in memory fields, and access distribution in lineage logs. When these
calculations exceed predefined tolerances, a DIP module generates an internal mutation proposal,
scoped to the node’s local trust domain. If an ACP is enabled, the reindexing event may be validated
through quorum. If an ACP is not present, DIP operates in a fully autonomous, policy-constrained

mode.

[0085] The interaction between a DIP and a DRP is particularly important in edge and
asynchronous networks. DIP-based splits may be triggered not only by semantic overload but also
by routing volatility or health signal propagation from node-resident NHMS modules. This ensures

that semantic structure reflects network behavior and domain-specific load, not just data ontology.

[0086] Unlike the structurally enforced zones and path-indexed containers, a DIP within a
memory-native substrate offers a local, feedback-responsive indexing layer that functions
independently of a dynamic alias system (DAS), scoped policy anchors, or governance boundaries.
This distinction allows a DIP to operate autonomously, or in tandem with an adaptive network

framework (ANF), without duplicating its logic.

[0087] By making indexing optional, entropy-driven, and memory-governed, the DIP layer
enables dynamic substrate behavior while preserving the core principle of data-native execution. It
allows networks to restructure themselves based on actual semantic activity—without requiring pre-

configured containers or rigid schemas.
8. Adaptive Consensus Protocol (ACP)

[0088] An Adaptive Consensus Protocol (ACP) is a memory-native mechanism that allows
distributed nodes to evaluate mutation proposals carried by agents without relying on centralized
coordination or globally synchronized state. Unlike traditional consensus mechanisms that require

fixed validator sets or persistent governance registries, ACP dynamically scopes quorum eligibility

19 Attorney Docket No. 20596-004USU1



based on policy references embedded within the agent’s memory field. Each node evaluates its own
eligibility, voting weight, and policy alignment autonomously, using only the information embedded

in the agent.

[0089] As illustrated in the example outlined in FIG. 6, the consensus process 600 begins at step
602 when Agent A proposes a mutation—such as adding an alias to a semantic index—carried in its
payload and described in its memory field (610). The memory field includes a policy reference
(policy.alias.admin), a lineage trace from origin A-038, and an encoded quorum type indicating a
weighted trust graph. These values collectively define the voting criteria and decision threshold

required for the mutation to be accepted.

[0090] Upon receipt, the node verifies the agent’s cryptographic signature—computed over the
agent’s UID, memory field, and payload using the sender’s private key—and validates it against the
sender’s known public key. The node then parses the memory field and validates the embedded
policy reference (620). The embedded policy agent specifies quorum logic, including eligibility
roles, voting structure, and weighting parameters. Once validated, the node evaluates its own
eligibility under the policy. If qualified, it initiates the voting process by assessing the trust path to
the proposer and determining alignment with the embedded policy reference (630). Each vote is
submitted as a new agent that includes a reference to the originating mutation, the voter’s trust score,

and justification metadata.

[0091] Votes are weighted relative to the node’s domain scope and trust profile (640), then
aggregated according to the quorum logic encoded in the agent’s memory field (650). For example, a
mutation may require a minimum of 3 out of 5 votes with cumulative weight > 2.0 for approval.

Votes may be accumulated locally or distributed via DRP to other eligible quorum participants.

[0092] If quorum is achieved, the ACP module appends an approval to the originating agent’s
memory trace (660), recording the vote outcome and embedding the quorum context for downstream
auditability. If quorum fails or the proposal is rejected, a rejection or quarantine flag is appended
instead at step 670. In either case, the memory field now encodes a complete execution trace of the
consensus process, enabling future nodes to verify compliance with embedded policy and trust

constraints.

[0093] ACP supports both stateless and memory-aware execution modes. In stateless mode, all

eligibility, weighting, and decision logic are derived solely from the agent’s memory field and

20 Attorney Docket No. 20596-004USU1



system policy at runtime. In memory-aware deployments, nodes may reference prior mutation
outcomes, trust scores, or policy participation history to inform quorum formation or trust weighting.
This optional historical view enables reputation-aware quorum forecasting while preserving local

autonomy.

[0094] ACP does not need to define persistent governance boundaries. It does not rely on
external registrars, named zones, or alias hierarchies. Instead, consensus can be entirely scoped to
the identity, memory, and mutation context of a single agent. FIG. 6 outlines how agents propagate
trust-weighted votes, accumulate memory-rich approval traces, and trigger policy-governed mutation

enforcement without centralized coordination.

[0095] An ACP enables verifiable mutation control across dynamic, trust-scoped environments
without requiring global consensus or fixed role hierarchies. By making consensus a function of
agent memory and policy embedding, the system achieves fine-grained governance resolution at the

substrate level—allowing mutation enforcement to scale with data, not infrastructure.
9. Transport Compatibility and Stateless Deployment Modes

[0096] to the systems described herein can function as a memory-native protocol substrate
regardless of the underlying network transport layer. This compatibility allows agents and the
associated execution stack to be deployed over traditional transport protocols—including TCP/IP,
HTTP, WebSockets, WebRTC, mesh relay, or delay-tolerant networking—without modification to
the internal structure or behavioral semantics of the agent. The protocol stack described herein
operates above the transport layer and interprets the agent as a complete operand, enabling stateless

interoperability even in legacy or low-trust environments.

[0097] Each agent carries its own execution context, trust parameters, and routing constraints
within the transport header and memory field. These internal references allow each node to evaluate
the agent without reliance on persistent sessions, source-address-based routing, or transport-level
state continuity. Once an agent is received and its signature is verified, the node parses its transport
metadata and memory content to determine propagation behavior, routing score, mutation eligibility,
and storage logic. Because no external session or registry is required, the protocol can be deployed in
asynchronous or disconnected environments, including edge networks and interplanetary

communication layers.

21 Attorney Docket No. 20596-004USU1



[0098] When operating over TCP/IP or HTTP, agents are typically serialized as structured data
payloads, transmitted as-is, and deserialized at the receiving node. These agents maintain their
structure and behavioral determinism independent of connection lifetime or transmission order.
Nodes may cache unresolved agents, reroute them via delay-tolerant protocols, or propagate them
along broadcast overlays as needed. Regardless of how the agent arrives, the system treats it as a

fully portable, self-contained behavioral unit.

[0099] The protocol also supports fallback execution in fully stateless environments. When
nodes are configured without persistent memory, they rely exclusively on the embedded data within
the agent for trust evaluation, quorum participation, and policy enforcement. This allows nodes with
limited resources or transient uptime—such as IoT devices, ephemeral containers, or anonymized
relays—to participate in substrate behavior without requiring full stack deployment or data retention.

In such contexts, the agent remains authoritative and sufficient for secure execution.

[0100] This compatibility model enables the memory-native substrate to be integrated into
existing infrastructure without requiring protocol replacement or disruptive reengineering. It also
allows for dual-mode deployments where substrate-native nodes interoperate with legacy clients,
enabling phased rollouts and hybrid system designs. Because behavior is embedded in the data—not
imposed by the network—the system remains secure, predictable, and scalable across a wide variety

of transport scenarios.
10. Interoperability with Cognition-Native Protocols

[0101] The memory-native protocol substrate disclosed herein is interoperable with cognition-
layer execution objects defined in related applications. While the substrate itself does not implement
cognition or reasoning, it provides a deterministic, memory-governed execution environment that is
compatible with cognition-native semantic agents. Specifically, semantic agents—data objects
designed to carry intent, inference graphs, or cognitive execution plans—can be encoded and routed,

mutated, or resolved using the same transport, memory, and consensus layers described herein.

[0102] An agent operating within this substrate may include an agent-specific semantic payload
and may optionally use reserved or extended memory field sections to store cognitive lineage,
reasoning context, mutation triggers, or belief-state deltas. These fields are interpreted by cognition-
layer processors but remain structurally consistent with the agent model disclosed herein. The

substrate stack, including DRP, DIP, and ACP, interprets these fields agnostically, acting only on

22 Attorney Docket No. 20596-004USU1



memory-derived trust signals, transport metadata, and policy references, without needing to apply or

simulate cognitive logic.

[0103] FIG. 3 and FIG. 6 illustrate how agents are treated as ordinary semantic objects by the
execution stack. Each agent is parsed by the semantic memory layer, its routing constraints enforced
by a DRP, and any mutation proposals processed by an ACP. In cognition-compatible deployments,
these proposals may reflect internal agent reprogramming, goal updates, or subgraph mutations.
However, the protocol stack does not require knowledge of the agent’s internal model or execution
semantics. It validates only that the mutation proposal satisfies quorum requirements, trust

alignment, and structural constraints.

[0104] This architectural separation allows semantic systems to execute over the memory-native
substrate while preserving protocol modularity and auditability. It also allows future cognition-layer
systems—whether built on semantic execution or other agent frameworks—to operate atop the same

substrate without requiring changes to the underlying routing, mutation, or consensus layers.

[0105] By embedding behavioral constraints, policy alignment, and mutation logic within the
agent’s memory field, agents executed over this substrate benefit from deterministic validation, trust-
scoped propagation, and memory-aware audit—all without requiring external session management

or predefined inference schemas.

[0106] This ensures interoperability between the cognition-native execution models described in
related applications and the memory-native substrate protected here. It reinforces the role of the
substrate as the foundational execution environment for cognition-native semantic agents, semantic

systems, and trust-scoped coordination at scale.
11. Deployment Configurations and Integration Scenarios

[0107] The protocol stack and memory-native architecture disclosed are deployable across a
wide range of network conditions, device capabilities, and governance models. The system supports
both minimal deployments—where only routing and verification modules are present—and full-
stack integrations that include memory retention, indexing, health monitoring, and consensus
modules. Because the system is substrate-agnostic and behavior is defined by the agent itself, nodes
may participate at varying levels of functionality without compromising the integrity or determinism

of the overall execution environment.

23 Attorney Docket No. 20596-004USU1



[0108] In edge deployments, such as mobile devices, remote sensors, or [oT nodes, minimal
substrate configurations allow these devices to receive and forward agents, evaluate routing and trust
constraints, and optionally cache or discard data based on local policy. These deployments typically
run a DRP and a simplified semantic memory layer—often configured in stateless mode to preserve
resources, though minimal local memory structures may still be used to evaluate trust constraints or

apply policy—while remaining fully interoperable with more complex peers.

[0109] In high-availability or core infrastructure nodes, the full protocol stack may be deployed,
including a DIP for entropy-based indexing, an ACP for mutation consensus, and a locally executed
NHMS module for real-time propagation of health signals. These nodes may also maintain memory
graphs, participate in quorum formation, and evaluate structural reclassification triggers. They are
well suited for use in knowledge systems, federated data exchanges, and high-volume cognitive

networks.

[0110] In federated or cross-domain deployments, such as academic research networks or inter-
organizational governance systems, the substrate can operate across administrative boundaries
without requiring shared infrastructure or synchronized ledgers. Each domain may define its own
policies and trust models, while the memory-native substrate enforces behavioral compliance using
agent-carried rules and verifiable metadata. DRP and ACP modules operate independently per node,

with consensus scoped locally and mutation eligibility enforced per policy reference.

[0111] The memory-bearing nature of agents allows the system to function in asynchronous,
delay-tolerant conditions. Agents carry all necessary context for execution—policy, mutation
proposal, quorum metadata, and routing constraints—allowing them to propagate and be validated
even after long delays. This makes the substrate suitable for scenarios where intermittent

connectivity, decentralized authority, or lack of centralized coordination are intrinsic constraints.

[0112] FIGS. 10A and 10B illustrate a federated semantic zone deployment in which nodes with
heterogeneous stack capabilities participate in a shared trust graph and adaptive semantic
propagation. The example demonstrates how stateless and memory-aware nodes coordinate policy-
scoped mutation validation, congestion response, and health-triggered indexing within and across

semantic zones.

[0113] In FIG. 10A, the deployment in Zone A: RESEARCH includes three nodes—Node Al
(1001), Node A2 (1002), and Node A3 (1003)—participating in a common trust graph and

24 Attorney Docket No. 20596-004USU1



governed under the policy scope policy.academic.review in quorum boundary 1005. Node Al is
stateless and implements only a DRP, forwarding agents based on routing scores and TTL
parameters. Node A2 operates in memory-aware mode with a DRP and an ACP enabled, allowing it
to validate proposed mutations against embedded policy references and contribute to scoped
quorums. Node A3 runs the full protocol stack, including a DRP, a NHMS, and a DIP enabling it to
act as an indexing authority within the zone. In the illustrated case, a congestion alert is received as a
health agent emitted by an NHMS module operating on a peer node or embedded within a
downstream agent’s trace. This signal triggers a DIP reindexing event at Node A3 (1010), resulting

in dynamic restructuring of the local semantic graph.

[0114] In FIG. 10B, the deployment in Zone B: COMMERCIAL includes Node B1 (1020) and
Node B2 (1021), both of which are more lightweight. Node B1 is a stateless edge node with local
caching capabilities. It performs prefiltering by dropping stale agents based on TTL constraints and
zone-specific policy bounds. Node B2 is DRP-enabled and implements a NHMS with a memory-
light footprint. Upon detecting a local NHMS latency alert (1030), Node B2 raises its quorum
threshold, increasing the mutation approval requirement for incoming agents in that class or scope. It
may also evaluate and approve local mutations under a scoped ACP, based on embedded policy

constraints.

[0115] Across both zones, the system demonstrates decentralized, trust-aligned coordination.
Nodes adapt their behavior based on health signals, policy references, and memory-scope awareness
without requiring centralized control or persistent trust registries. Together, FIGS. 10A and 10B
provide an example of how the system allows for the federated behavior of memory-native

substrates across trust domains with heterogeneous node capabilities.

[0116] This architecture supports evolutionary deployment models. Nodes may begin as
stateless routers and progressively adopt more protocol layers as capacity or trust relationships
deepen. Because behavior is driven by agent memory and transport metadata, no changes to node
identity or coordination logic are required when adding capabilities. The protocol adapts seamlessly

to the node’s local context and the behavior of received agents.

[0117] By enabling layered, policy-bound, memory-informed execution across heterogeneous

networks and device classes, a unified, cognition-compatible substrate deployable at global scale,

25 Attorney Docket No. 20596-004USU1



local granularity, and across trust-divergent boundaries without sacrificing integrity, auditability, or

runtime determinism can be supported.
12. Extension Pathways

[0118] A fully modular, memory-native substrate for distributed protocol execution, is capable
of operating independently or as the foundational layer for cognition-compatible or structurally
governed systems. By embedding state, policy references, mutation history, and access behavior
directly into the data unit—defined as an agent—the substrate enables each object to govern its own
propagation, mutation eligibility, and policy compliance without reliance on centralized control,

global consensus, or externally maintained sessions.

[0119] This architecture supports stateless and memory-aware deployments, deterministic
execution across legacy and modern transport layers, and fine-grained, policy-bound mutation
governance at the data object level. With routing scoped by memory-derived trust models and
behavioral feedback loops supported by a NHMS-generated health agents, the system can reorganize
itself, suppress degraded routes, and prioritize aligned behavior—all while preserving structural
clarity and auditability. It functions as a protocol execution environment in which semantic behavior
emerges from the interaction between data structure and runtime memory, rather than being imposed

through static roles or fixed hierarchies.

[0120] In addition to a protocol or a transport framework, the system defines a self-organizing,
memory-informed execution substrate capable of supporting agents, networks, knowledge systems,
and governance mechanisms that adapt, audit, and evolve without centralized control. Whether
operating in isolation, in tandem with the ANF structural layer, or as the transport fabric for
cognition-native semantic systems, the memory-native substrate disclosed herein establishes a

deterministic foundation for distributed semantic computing.
18. Definitions

[0121] As used herein, “agent” refers to a cryptographically signed, memory-bearing data object
that acts as the fundamental unit of transmission and execution within the disclosed substrate. Each
agent includes a unique identifier, a payload, a memory field, a transport header, and a digital
signature. These components collectively enable the agent to operate autonomously, carry state, and

participate in routing, consensus, and indexing operations without reliance on external session state.

26 Attorney Docket No. 20596-004USU1



[0122] As used herein, a “semantic agent” is a specialized form of agent designed for cognition-
native execution. In addition to the core components of an agent, a semantic agent may include an
intent field, cognition-compatible payloads, and dynamic behavioral constraints. Semantic agents are
capable of modifying their own structure or state in response to embedded policy references,
memory context, or execution outcomes, enabling adaptive decision-making and fine-grained
semantic control within distributed substrates. All semantic agents are agents, but not all agents are

semantic agents.

[0123] As used herein, “memory field” denotes the section of an agent that records mutation
lineage, access logs, trust evaluations, policy references, and optional execution traces. The memory
field enables each agent to carry its behavioral history and governance context, allowing nodes to

evaluate and act upon the agent deterministically without external session state.

[0124] As used herein, “transport header” describes metadata embedded in the agent that
defines routing constraints, including time-to-live, trust radius, semantic class, latency sensitivity,
and quorum priority. This header informs how an agent is forwarded, cached, or contained as it

traverses the network.

[0125] As used herein, “dynamic routing protocol” or DRP is the memory-aware routing layer
within the protocol stack that scores candidate paths based on trust information extracted from the
memory field, network health signals, and semantic scope constraints. DRP replaces traditional

address-based routing with trust-scoped propagation behavior.

[0126] As used herein, “dynamic indexing protocol” or DIP refers to an optional indexing layer
that dynamically restructures semantic flows based on entropy thresholds, semantic density, and
lineage volatility. DIP enables adaptive reclassification and semantic partitioning without requiring

pre-configured hierarchical containers.

[0127] As used herein, “adaptive consensus protocol” or ACP describes a policy-referenced,
memory-driven quorum mechanism through which nodes validate and authorize structural or
behavioral mutations proposed by agents. ACP forms ad hoc voting quorums based on trust graphs

and policy references embedded in the agent memory.

27 Attorney Docket No. 20596-004USU1



[0128] As used herein, “network health monitoring system” or NHMS means the subsystem by
which nodes monitor local network conditions, generate health agents containing operational signals,

and adapt routing, consensus, or caching behavior based on trust-scoped feedback.

[0129] As used herein, “health agent” refers to an agent emitted by NHMS that carries metrics
such as congestion, trust volatility, propagation entropy, or cache pressure. Health agents influence

future routing and mutation behavior by distributing real-time observations across the substrate.

[0130] As used herein, “trust graph” denotes the evolving, memory-informed model maintained
by nodes, mapping prior interaction outcomes to trust scores used in routing and quorum weighting.

Trust graphs may be ephemeral or persistently cached depending on deployment configuration.

[0131] As used herein, “mutation proposal” describes a structural or behavioral change request
embedded within an agent, including reclassification, alias overrides, index splits, or policy updates.
Mutation proposals are evaluated under an ACP using embedded policy references and scoped

voting.

[0132] As used herein, “stateless mode” refers to a deployment configuration in which nodes do
not persist external memory between agent evaluations. All routing, consensus, and propagation

decisions are made exclusively using the data embedded within received agents.

[0133] As used herein, “memory-aware mode” describes a deployment configuration in which
nodes maintain a persistent semantic memory graph, enabling enhanced trust modeling, quorum
prediction, health feedback evaluation, and cache optimization based on accumulated historical

context.

[0134] As used herein, “policy agent” refers to an agent that defines governance rules, mutation
eligibility conditions, quorum thresholds, and role permissions for other agents. Policy agents are
resolved via embedded references in the memory fields of proposing agents. A policy agent is a
memory-bearing agent whose primary purpose is to encode governance logic, permission rules, and
quorum constraints. Policy agents may be embedded within other agents or resolved via alias and are
used to determine whether proposed mutations, access operations, or routing decisions meet the
criteria required under the referenced policy. Policy agents do not typically mutate themselves but

act as static or versioned authorities evaluated by other agents during execution.

28 Attorney Docket No. 20596-004USU1



[0135] As used herein, “access log” means the subcomponent of an agent's memory field
recording prior interactions, including access attempts, mutation submissions, trust evaluations, and

system feedback events.

[0136] As used herein, “trace entry” refers to a discrete event or decision recorded within the
memory field of an agent as it traverses the network. Trace entries include routing outcomes,

mutation results, health feedback responses, and policy evaluations.

[0137] As used herein, “cognition-compatible payload” denotes a semantic payload, such as a
semantic agent, that encodes cognitive execution plans, inference graphs, or dynamic behavioral
models capable of operating over the memory-native substrate without requiring substrate-level

awareness of cognitive semantics.

[0138] As used herein, “federated semantic zones” describe collections of independently
operated nodes or domains that coordinate routing, mutation, and indexing behavior across trust-
divergent boundaries using shared memory-native substrate logic, without requiring centralized

governance or global consensus.

[0139] As used herein, “entropy” refers to context-dependent, locally observable variation in
semantic state, network conditions, and agent interaction history, used as a non-deterministic
substrate for mutation proposal validation, proximity-aware routing, and adaptive cache
orchestration. Unlike formal Shannon or thermodynamic entropy, entropy in this context denotes
node-local uncertainty that emerges from ephemeral telemetry, resource pressure, lineage topology,
and anchor-local mutation rates. It operates as a governing substrate for semantic object continuity,
enabling the substrate to dynamically modulate execution flows, reweight agent trust, and adjust
container scoping without centralized coordination. In the systems described herein, entropy
supports persistence of memory-native agents by anchoring their routing and execution in temporally

and topologically unique context windows.

[0140] As used herein, “near real-time” or “real time” describes a process that occurs or a
system that operates to produce a given result with a slight but acceptable delay between the
occurrence of an event, such as an acquisition of or update to relevant data, and when the given
result is produced. In the context of the present disclosure, a slight but acceptable delay is in the

range of about 250 milliseconds.

29 Attorney Docket No. 20596-004USU1



[0141] As used herein, a “consensus node” refers to a network node that is eligible to participate
in, initiate, or validate quorum decisions under an Adaptive Consensus Protocol (ACP) based on
information contained within the memory field of an agent. A consensus node may execute policy-
referenced voting behavior, record trust-weighted votes, append consensus traces, and validate
mutation eligibility according to embedded governance constraints. Eligibility as a consensus node is
dynamic and scoped to the agent’s transport header, policy references, and trust domain; it does not

require persistent identity, fixed validator roles, or global registry.

[0142] “About” when used herein with reference to a value or range is used in its plain and
ordinary sense as understood by persons of ordinary skill in the art as referring to standard tolerances
for the referenced parameter, and when standard tolerances are not applicable, a value or range of
values defined with “about” is met when a change in the range or value changes the changes the
performance characteristics of the relevant parameter or the performance characteristics of the

system as a whole by not more than five percent (5%).

[0143] The computer-based processing system and method described above may be
implemented in any type of computer system or programming or processing environment, or in a
computer program, alone or in conjunction with hardware. The present disclosure may also be
implemented in software stored on a non-transitory computer-readable medium and executed as a
computer program on a general purpose or special purpose computer. It is further contemplated that
the present invention may be run on a stand-alone computer system, or may be run from a server
computer system that can be accessed by a plurality of client computer systems interconnected over

an intranet network, or that is accessible to clients over the Internet.

30 Attorney Docket No. 20596-004USU1



What is claimed is:

1. A computer-implemented system for memory-native protocol execution, comprising:
a plurality of agents, wherein each of the plurality of agents includes a unique identifier, a
payload, a memory field, a transport header, and a cryptographic signature;
a plurality of distributed nodes, wherein each of the plurality of distributed nodes is
configured to transmit and receive any of the plurality of agents; and
a modular protocol stack, wherein the modular protocol stack is configured to be executed
at each of the plurality of distributed nodes, and wherein the modular protocol stack
includes a routing layer, an indexing layer, and a consensus layer,
wherein behavior within the system of the routing layer, the indexing layer, and the
consensus layer is determined by metadata embedded within a received respective one
of the plurality of agents,
wherein the memory field of each of the plurality of agents includes verifiable lineage,
access logs, and policy references, and wherein the verifiable lineage, the access logs,
and the policy references include sets of instructions configured to govern routing,
mutation, and consensus behavior for the corresponding one of the plurality of agents.
2. The system of claim 1, wherein each of the plurality of agents is configured to operate as
a self-governing protocol operand, and wherein the transport header specifies constraints
selected from the group consisting of: trust scope, time-to-live, semantic class, latency
sensitivity, and quorum priority.
3. The system of claim 1, wherein each of the plurality of distributed nodes includes a local
trust graph derived from prior memory field evaluations and is configured to dynamically
score routing candidates during transmission based on the local trust graph.
4. The system of claim 1, wherein the protocol stack includes a network health monitoring
system configured to emit health agents comprising congestion metrics, trust volatility,
semantic entropy, and cache degradation data, and wherein each node is configured to
modify routing or mutation behavior in response to received one or more health agents.
5. The system of claim 1, wherein the protocol stack is configured to be executed over a
stateless transport layer selected from the group consisting of: TCP/IP, HTTP, mesh relay,
delay-tolerant networking, and WebRTC.
6. The system of claim 4, wherein the one or more health agents include entropy thresholds

configured to trigger index splitting or semantic reclassification by the indexing layer.

31 Attorney Docket No. 20596-004USU1



7. The system of claim 1, wherein the each of the plurality of agents comprises a cognition-
compatible payload encoded as a data object, and wherein the protocol stack is configured to
execute cognition-layer mutation behavior using memory field constraints and embedded
policy.

8. The system of claim 3, wherein each of the plurality of distributed nodes is configured to
adjust the local trust graph in response to trace outcomes embedded in received agents.

9. The system of claim 8, wherein each of the plurality of distributed nodes is further
configured to update entries in the local trust graph based on data received from health agents
emitted by a network health monitoring system and adjust node trust scores based on one or
more observed metrics selected from a group consisting of congestion, latency variance,
policy violation frequency, and propagation entropy, thereby allowing a dynamic routing
protocol (DRP) to re-score candidate transmission paths in -real-time.

10. The system of claim 1, further including a dynamic indexing protocol (DIP) configured
to form soft-index containers based solely on entropy anchors computed from agent-resident
data, wherein the entropy anchors are statistical functions of mutation divergence trajectory,
lineage density, and access-distribution patterns recorded in the memory field of the agent,
and to create, split, merge, or promote local index anchors without involving or depending on
a dynamic alias system or human-readable alias resolution.

11. The system of claim 1, further including a network health monitoring system is
configured to emit health agents that, when received by one of the plurality of nodes, cause
such node to execute one or more adjustments to parameters of an adaptive consensus
protocol for one or more semantic classes, the adjustments including raising or lowering
quorum thresholds, excusing or reinstating specific participations from quorum eligibility,
and re-weighting participant votes.

12. The system of claim 1, wherein each of the plurality of agents is a semantic agent having
a structure with an intent field and a cognition-compatible payload, and wherein the structure
is configured to be modified in response to policy references or execution context stored in
the memory field.

13. The system of claim 1, wherein each of the plurality of agents includes a reference to a
policy agent, the policy agent comprising quorum rules, mutation eligibility criteria, and role
definitions referred to when governing execution behavior.

14. A computer-implemented method for distributed memory-native communication,

comprising:

32 Attorney Docket No. 20596-004USU1



receiving an agent at a node, the agent comprising a unique identifier, an access log, a
payload, a memory field, a transport header, and a signature;
verifying the signature of the agent and parsing the transport header and the memory
field;
determining routing eligibility and mutation scope of the agent by evaluating the access
log and policy references of the agent;
executing one or more protocol stack layers based on content contained in the memory
field;
appending a trace log to the memory field; and
forwarding, after appending the trace log, the agent to one or more eligible nodes,
wherein the one or more eligible nodes is determined by assessing dynamic routing
protocol and one or more memory field constraints, for mutation execution or
resolution.
15. The method of claim 14, wherein determining routing eligibility includes scoring
candidate paths based on trust scores derived from access log outcomes recorded in prior
agents.
16. The method of claim 14, further including triggering a consensus operation when the
memory field indicates a proposed mutation, and evaluating trust-weighted votes cast by
participating nodes cast according to a policy agent referenced in the memory field.
17. The method of claim 14, further including restricting and authorizing read, write, or
mutation behavior based on policy references contained in the memory field without reliance
on external session state.
18. The method of claim 14, wherein the agent is a semantic agent having a structure with an
intent field and a cognition-compatible payload, further including modifying the structure in
response to policy references or execution context stored in the memory field.
19. The method of claim 14, wherein the agent includes a reference to a policy agent, the
policy agent including quorum rules, mutation eligibility criteria, and role definitions, further
including governing execution behavior of the agent based on the quorum rules, mutation
eligibility criteria, and role definitions.
20. The method of claim 14, wherein evaluating the access log includes identifying the most
recent execution history associated with neighboring nodes, including success rates, policy

violation frequency, and node responsiveness.

33 Attorney Docket No. 20596-004USU1



Abstract

A computer-implemented system and method for distributed memory-native networking using
agents. Each agent comprises a unique identifier, payload, memory field containing lineage and
policy references, transport metadata, and a cryptographic signature. A modular protocol stack
processes these agents through routing, indexing, and consensus layers, with behavior determined by
embedded memory. Routing decisions are trust-scoped based on memory-derived access logs and
health feedback. Mutation proposals are validated using dynamic, memory-referenced quorum
formation. The system enables stateful, policy-bound propagation, structural reorganization, and
adaptive execution without centralized coordination or persistent session state. It operates over
conventional transport protocols and supports interoperability with cognition-layer payloads,
including semantic execution. The architecture allows dynamic trust modeling, autonomous network
adaptation, and memory-driven mutation governance across heterogeneous, decentralized, and high-

latency environments.

25256767.1

34 Attorney Docket No. 20596-004USU1



