What is claimed is:

1. A computer-implemented method for memory-native two-stage authentication, comprising:
generating, by a sender agent, a dynamic agent hash (DAH t) as a successor of a prior trusted
dynamic agent hash (DAH_ {t—1}) generated by the sender agent, wherein the DAH t s

generated under an update rule that incorporates at least one unpredictability contribution
and a volatile salt;

deriving, by the sender agent, a symmetric encryption key from a current dynamic identity of
a recipient selected from a recipient dynamic agent hash (DAH_R) or a recipient dynamic
device hash (DDH_R);

encrypting a payload with the symmetric encryption key and embedding within the encrypted
payload an embedded sender dynamic agent hash (DAH_S) computed contemporaneously
with the DAH t;

constructing, by the sender agent, a message comprising a transport header and the encrypted
payload, and placing the DAH t in the transport header and the DAH_S within the
encrypted payload, wherein the message does not include the symmetric encryption key;

transmitting, by the sender agent, the message to the recipient;

receiving, by the recipient, the transmitted message and reconstructing, from a locally
retained trust-slope state for the sender agent that includes at least the DAH_{t—1} most
recently validated and previously accepted by the recipient, an expected successor
candidate for time t under the update rule and within a recipient-defined set of policy-
bounded continuity parameters;

validating, by the recipient, the DAH t against an expected successor candidate;

deriving, by the recipient, a recipient symmetric encryption key from a corresponding one of
DAH _R or DDH_R and decrypting the payload,

extracting, by the recipient, the DAH_S from the decrypted payload and validating the
DAH_S against a reconstructed trust slope for the sender agent obtained by advancing the
locally retained trust-slope state under the update rule and within the recipient-defined set
of policy-bounded continuity parameters; and

accepting, by the recipient, the message only upon successful validation of both the DAH t
and the DAH_S.

2. The method of claim 1, wherein the accepting and validating are performed without reliance

on persistent private keys or external certificate authorities.

3. The method of claim 1, wherein the unpredictability contribution includes a keyed derivation
from a static hardware anchor and a volatile per-epoch salt.

4. The method of claim 1, wherein the unpredictability contribution includes an extractor output
over a stability-tuned local state vector, the extractor output being used without exposing a raw
local state.

5. The method of claim 1, wherein the update rule includes a hardware-anchor derivation and a
local-state extractor output and wherein both the hardware-anchor derivation and the local-state
extractor output are concatenated in the update rule.

6. The method of claim 1, further comprising rotating an entropy anchor upon detection of
staleness and recording a forward link configured to bind a terminal value of a prior epoch to a
new initial identity, and rejecting identifiers from an expired epoch except for bridging proofs
that open through the forward link.

7. The method of claim 1, further comprising forecasting a near-term successor identity and an
acceptance envelope based on cadence statistics and role-transition models; classifying a
presented successor as consistent when the presented successor lies within the acceptance
envelope; and degrading trust, requesting supplemental proofs, or quarantining when the
presented successor falls outside the acceptance envelope.

8. The method of claim 1, further comprising validating, prior to decryption, header-level
continuity of the DAH t against an expected successor and, after decryption, validating payload-
level continuity of the DAH_S against a reconstructed trust slope, and rejecting the message
without external registry lookup upon failure of validation of either header-level continuity of the
DAH t or payload-level continuity of the DAH_S.

9. The method of claim 1, wherein the symmetric encryption key is derived via a key derivation
function keyed by the DAH R or DDH_R and a context tag, and wherein no asymmetric key
exchange is performed.

10. The method of claim 1, wherein, when the sender agent cannot derive a symmetric key
from the DAH_R or DDH_R, deriving, by the sender agent, a provisional key from a last trusted
recipient anchor and, upon decryption failure, performing, by the sender agent, a fallback
including a checkpoint request that yields a bounded proof window or a short challenge—
response rekey handshake.

11. The method of claim 10, further including retrying, by the sender agent, decryption within a

policy-bounded attempt window.

12. The method of claim 1, further including separating by domain extractor tokens by a fixed
public seed and context tag per deployment, and enforcing by validation an acceptance envelope
that rejects off-manifold drift without exposing raw local state vectors.

13. The method of claim 1, further including applying, by the recipient, a two-epoch acceptance
window for recipient identity, enforcing per-sender rate limits on failed decryptions, and
emitting opaque failure codes to prevent oracle leakage.

14. The method of claim 1, further comprising rotating the DAH _t presented in the header at a

policy-defined cadence independent of payload semantics.

15. The method of claim 1, wherein deriving the symmetric key includes performing a key

derivation function keyed by the DAH R or DDH_R and a domain-separated context tag, and

wherein the derived key expires with a recipient epoch to prevent cross-epoch decryption.

16. A system for agent mutation entanglement, comprising:

a host device configured to compute a dynamic device hash (DDH t) as a successor of a prior
dynamic device hash (DDH_p) under an update rule that incorporates at least one
unpredictability contribution and a volatile salt;

a semantic agent configured to execute on the host device and to compute a successor dynamic
agent hash (DAH_s) from a prior dynamic agent hash (DAH_p) and a host mutation token
derived from the DDH_t and a mutation class associated with the host device;

an entanglement module configured to emit a signed entanglement trace that records DAH _p,
DDH t, the host mutation token, DAH_p, and mutation metadata; and

a validator configured to accept DAH_s only if the entanglement trace opens to DDH_t under
policy and DAH_s is a valid successor of DAH_p.

17. The system of claim 16, wherein the host mutation token comprises a cryptographic hash of

DDH _t, mutation class, and epoch information, and the entanglement trace includes a signature

of the host device.

18. The system of claim 16, further including a monitoring module configured to detect invalid
entanglement, cadence anomaly, neighborhood mismatch of extractor outputs, and stale salt, and
to degrade trust-score of the semantic agent or quarantine the semantic agent upon detection of
invalid entanglement, cadence anomaly, neighborhood mismatch of extractor outputs, or stale
salt.

19. The system of claim 16, wherein the semantic agent includes a policy reference to a policy

agent that specifies quorum roles, voting weights, and eligibility for mutation validation, and is

configured to accept entangled mutations only when quorum roles, voting weights, and eligibility
for mutation validation are consistent with the policy.

20. The system of claim 16, further including a message authentication code configured to
authenticate the entanglement trace by a value derived from DDH _t under a domain-separated
key derivation function in lieu of a digital signature, wherein the key is ephemeral and locally
scoped to an epoch of the host device.

21. The system of claim 16, wherein the host device is configured to employ an ephemeral
signing keypair minted per epoch and destroyed upon rotation, and including a verifier
configured to accept the entanglement trace only when an epoch identifier opens to DDH_t under

policy.

