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SYSTEMS AND METHODS FOR MEMORY-NATIVE IDENTITY AND AUTHENTICATION  

RELATED APPLICATION DATA 

[0001] This application claims the benefit of priority of U.S. Provisional Patent Application 

Serial No. 63/726,519, filed on November 30, 2024, titled “Adaptive Network Framework (ANF) for 

Modular, Dynamic, and Decentralized systems”, U.S. Provisional Application Serial No. 

63/787,082, filed on April 11, 2025, titled “AQ (Adaptive Query): A Programming Language and 

Cognitive Execution Layer for Distributed, Stateful AI”, U.S. Provisional Application Serial No. 

63/789,967, filed on April 16, 2025, titled “Cross-Domain Applications of the Adaptive Query 

Framework”, U.S. Provisional Patent Application Serial No. 63/800,515, filed on May 6, 2025, titled 

“Cognition-Native Semantic Execution Platform for Distributed, Stateful, and Ethically-Constrained 

Agent Systems”, each of which is incorporated by reference herein in its entirety. 

REFERENCE TO COMPUTER PROGRAM LISTING APPENDIX 

[0002] A Computer Program Listing is submitted concurrently with the specification as a TXT 

formatted file, with a file name of “20596-005USU1-Computer-Program-Listing-Appendix.txt”, a 

creation date of November 13, 2025, and a size of 47 kilobytes. The Computer Program Listing filed 

is part of the specification and is incorporated in its entirety by reference. 

FIELD 

[0003] The present disclosure generally relates to cryptographic systems and methods for 

determining digital identify and authentication, and more specifically to systems and methods for 

memory-native identity and authentication without keypairs. 

BACKGROUND 

[0004] Conventional digital identity and authentication systems rely on persistent public-private 

keypairs and signature-based validation mechanisms. These systems expose users and devices to 

various vulnerabilities, including key compromise, metadata correlation, certificate revocation 

failure, and susceptibility to quantum cryptographic attacks. Public key infrastructure (PKI) typically 

requires centralized trust anchors, global registries, and persistent key material, making it unsuitable 

for decentralized, memory-constrained, or privacy-sensitive environments. Moreover, in ephemeral 

or cognition-native systems—such as distributed AI agents or stateless substrates—the requirement 

to maintain static credentials is impractical or infeasible. Accordingly, there is a need for systems 

and methods that address these shortcomings. 
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SUMMARY OF THE DISCLOSURE 

[0005] A computer-implemented method for memory-native two-stage authentication includes 

generating, by a sender agent, a dynamic agent hash (DAH_t) as a successor of a prior trusted 

dynamic agent hash (DAH_{t−1}) generated by the sender agent, wherein the DAH_t is generated 

under an update rule that incorporates at least one unpredictability contribution and a volatile salt, 

deriving, by the sender agent, a symmetric encryption key from a current dynamic identity of a 

recipient selected from a recipient dynamic agent hash (DAH_R) or a recipient dynamic device hash 

(DDH_R), encrypting a payload with the symmetric encryption key and embedding within the 

encrypted payload an embedded sender dynamic agent hash (DAH_S) computed contemporaneously 

with the DAH_t, constructing, by the sender agent, a message comprising a transport header and the 

encrypted payload, and placing the DAH_t in the transport header and the DAH_S within the 

encrypted payload, wherein the message does not include the symmetric encryption key, 

transmitting, by the sender agent, the message to the recipient, receiving, by the recipient, the 

transmitted message and reconstructing, from a locally retained trust-slope state for the sender agent 

that includes at least the DAH_{t−1} most recently validated and previously accepted by the 

recipient, an expected successor candidate for time t under the update rule and within a recipient-

defined set of policy-bounded continuity parameters, validating, by the recipient, the DAH_t against 

an expected successor candidate, deriving, by the recipient, a recipient symmetric encryption key 

from a corresponding one of DAH_R or DDH_R and decrypting the payload, extracting, by the 

recipient, the DAH_S from the decrypted payload and validating the DAH_S against a reconstructed 

trust slope for the sender agent obtained by advancing the locally retained trust-slope state under the 

update rule and within the recipient-defined set of policy-bounded continuity parameters, and 

accepting, by the recipient, the message only upon successful validation of both the DAH_t and the 

DAH_S.  

[0006] A system for agent mutation entanglement is provided that includes a host device 

configured to compute a dynamic device hash (DDH_t) as a successor of a prior dynamic device 

hash (DDH_p) under an update rule that incorporates at least one unpredictability contribution and a 

volatile salt, a semantic agent configured to execute on the host device and to compute a successor 

dynamic agent hash (DAH_s) from a prior dynamic agent hash (DAH_p) and a host mutation token 

derived from the DDH_t and a mutation class associated with the host device, an entanglement 

module configured to emit a signed entanglement trace that records DAH_p, DDH_t, the host 
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mutation token, DAH_p, and mutation metadata, and a validator configured to accept DAH_s only if 

the entanglement trace opens to DDH_t under policy and DAH_s is a valid successor of DAH_p. 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0007] For the purpose of illustrating the disclosure, the drawings show aspects of one or more 

embodiments of the disclosure. However, it should be understood that the present disclosure is not 

limited to the precise arrangements and instrumentalities shown in the drawings, wherein: 

FIG. 1 illustrates components and steps of a lifecycle of a Dynamic Agent Hash (DAH) or Dynamic 

Device Hash (DDH) within the Dynamic Signature Mesh (DSM) in accordance with an embodiment 

of the present disclosure; 

FIG. 2 illustrates a sparse slope reconstruction process from a checkpoint using bounded proofs and 

periodic anchors in accordance with an embodiment of the present disclosure; 

FIG. 2A illustrates a stepwise replay process of FIG. 2 in more detail; 

FIG. 3 illustrates components for a process for fallback compatibility with legacy, signature-based 

systems in accordance with an embodiment of the present disclosure; 

FIG. 4 illustrates components of a DSM-secured message and steps for processing the DSM-secured 

message in accordance with an embodiment of the present disclosure; 

FIG. 5 shows a process for detection and rejection of spoofed or replayed identity claims in 

accordance with an embodiment of the present disclosure; 

FIG. 6 illustrates components and steps for predictive validation of agent and device identity in 

accordance with an embodiment of the present disclosure; 

FIG. 7 illustrates components and steps for agent-to-substrate slope entanglement in accordance with 

an embodiment of the present disclosure; 

FIGS. 8A and 8B illustrate an example of an append-only mutation lineage log for an agent in 

accordance with an embodiment of the present disclosure; 

FIG. 9 illustrates components and steps for quorum-based recovery after memory loss in accordance 

with an embodiment of the present disclosure;  
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FIG. 10 illustrates components and steps for rotation of an entropy anchor and adaptive 

reinitialization of a trust slope in accordance with an embodiment of the present disclosure; 

FIG. 11 shows components and steps for delayed slope validation under high-latency or intermittent 

connectivity conditions in accordance with an embodiment of the present disclosure; and 

FIG. 12 provides an overview of components and steps for determining cumulative slope 

entanglement across multiple substrate nodes during agent migration in accordance with an 

embodiment of the present disclosure. 

DETAILED DESCRIPTION 

1. Overview  

[0008] An authentication architecture is needed that operates securely without persistent keys or 

external verification authorities, and instead derives identity from locally retained, time-sensitive, 

and context-aware behavioral information. A memory-native identity substrate is provided in which 

a device or agent expresses identity as a trust slope—that is, the cumulatively validated sequence of 

Dynamic Agent Hashes (DAHs) or Dynamic Device Hashes (DDHs) formed by successive, 

verifiable identity mutations—rather than a static credential. Trust-slope continuity denotes that a 

presented successor is a valid descendant of a previously trusted state under policy-bounded checks. 

Each identity step is computed from the immediately prior step and a source of non-exported 

unpredictability, enabling receivers to evaluate continuity and provenance locally, without reliance 

on centralized authorities, long-lived keypairs, or synchronized registries. 

[0009] In one embodiment, a static hardware anchor is combined with a volatile, non-repeating 

salt to derive a per-epoch contribution. In another embodiment, a locally observed state is collected 

into a local state vector and transformed by a strong extractor to yield a bounded pseudorandom 

token; the token is then combined with a volatile salt. Either of these embodiments alone, or a hybrid 

that incorporates both in the same step, produces a successor identity value bound to time, context, 

and prior state. In this way, constrained devices can be accommodated that expose a hardware 

identifier as well as richer platforms that can derive robust local state vectors. 

[0010] The trust slope is append-only and verifiable: a receiver stores any previously trusted 

step and evaluates a presented successor against policy-defined continuity criteria. Because each step 

binds to the prior step and to non-exported unpredictability, an attacker lacking the device’s local 
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state (or volatile salt) cannot feasibly synthesize valid successors. The continuity policy is tunable to 

favor stability within a role or operating context while remaining sensitive to genuine context 

changes. This may be achieved by constructing the local state vector with stability-preserving 

projections and by verifying bounded drift with error-tolerant sketches. 

[0011] Messages are constructed so that identity is bound at both transport and semantic layers. 

A sender places the current dynamic hash in the message header for fast, stateless screening at the 

receiver, and also embeds the same value inside the protected payload to bind semantics to transport. 

In certain embodiments, payload confidentiality and integrity are derived from receiver-local identity 

material (e.g., via a key derivation based on the receiver’s current dynamic hash), allowing two-stage 

validation that rejects malformed traffic before decryption and prevents man-in-the-middle 

substitution after decryption. 

[0012] In addition, an append-only lineage mechanism is provided in which each identity step is 

committed into a compact chain of commitments with periodic anchors. This permits sparse storage 

at senders and receivers while enabling delayed or offline reconstruction of intervening steps. Where 

recent anchors are missing or devices are intermittently connected, receivers request short proofs or 

checkpoints and verify the recomputed path against stored anchors, preserving verifiability in delay-

tolerant and edge environments. 

[0013] To maintain long-term health of the identity process, the system supports reseeding and 

anchor rotation policies that detect staleness or environmental drift and initiate controlled re-

anchoring without breaking verifiability; forward links are recorded so downstream verifiers can 

bridge old and new anchors under policy. In addition, a quorum-based recovery path allows a device 

or agent to rejoin the trust graph after state loss by aggregating attestations from previously trusted 

peers, with the recovery token recorded into lineage for downstream audit. 

2. Identity Generation and Trust Slope 

[0014] FIG. 1 provides a schematic overview of components and a process 100 for the 

generation and evolution of a memory-native identity for a device or agent as a verifiable trust slope. 

At initialization, a slope root 101 is established by computing a dynamic hash from one of two  

exemplary ways. In the first, a static hardware anchor 108 (e.g., TPM, TEE, SoC identifier) is 

combined with a volatile salt 109 to yield an unpredictable seed. In a second, a locally observed state 

is collected into a local state vector 105, processed by an extractor 106 to produce a bounded 
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pseudorandom token 107, and combined with a volatile salt 109. A semantic context vector 110 and 

a memory state indicator 111 may be incorporated to bind role, zone, or process mix to the initial 

identity. The resulting dynamic device or agent hash at epoch t=0 establishes DAH₀/DDH₀ at the 

slope root 101. 

[0015] The initial identity is advanced by an update rule 112 that concatenates the prior hash 

with a fresh entropy input and a domain-separating tag to yield the next step on the slope. In one 

example, the update is computed as DAHₜ = H(DAHₜ₋₁ ∥ Ext(Xₜ) ∥ saltₜ ∥ tag), where Xₜ is derived 

from the local state vector 105 and Ext(·) denotes the extractor 106. Alternatively,  the update is 

computed as DAHₜ = H(DAHₜ₋₁ ∥ KDF(HWID, saltₜ) ∥ tag) using the hardware anchor 108 and 

volatile salt 109. These may be combined by hashing both inputs in a single step to increase 

robustness. Application of the update yields successive identities DAH₁ 120, DAH₂ 130, and DAH₃ 

140 along a verifiable trust slope 150, with arrows 170a–170d indicating the forward-only process 

flow rather than hardware connections. 

[0016] In the local-state embodiment, the local state vector 105 consists of device-observable 

signals sampled within an epoch, including one or more of monotonic counters, high-resolution 

timing deltas, CPU performance counters, scheduler jitter statistics, I/O inter-arrival micro-jitter, 

optional sensor noise, rolling process histograms, and short-horizon sketches of recent dynamic 

hashes. The feature map that produces Xₜ from the local state vector applies normalization and 

clipping to bounded ranges, projects to a fixed dimension via signed random projections with a 

public seed, optionally appends a discrete context code derived from the semantic context vector 

110, and applies a locality-sensitive binarization so that small fluctuations in the local state yield 

stable Xₜ while genuine role or zone changes flip a controlled subset of bits. The extractor 106 (e.g., 

a SHA-3/512-based KDF) maps Xₜ to the token 107 with collision and preimage resistance suitable 

for use in the update rule described above. 

[0017] To align with the example code in the Computer Program Listing, the following steps 

may be performed within each epoch: compute Xₜ from the local state vector 105 using the signed-

projection and locality-sensitive mapping just described; compute the token 107 as Ext(Xₜ); compute 

DAHₜ by hashing DAHₜ₋₁ with the token 107, the volatile salt 109, and a domain-separating tag; and 

record a mutation class 160 identifying the semantic reason for the step (e.g., role update, delegation, 

policy commit). Each step appends a trace entry to the memory state 111, thereby enabling 

downstream verification that DAHₜ is a valid successor to DAHₜ₋₁ on the trust slope 150. 
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[0018] The hardware-anchor embodiment proceeds analogously but replaces the token 107 with 

a keyed derivation from the hardware anchor 108 and the volatile salt 109. The volatile salt 109 is 

non-repeating at the device and epoch level, ensuring unpredictability even if the hardware anchor 

108 is constant. In the combined embodiment, both the token 107 and a key derivation from the 

hardware anchor 108 are included in the same update to produce DAHₜ, thereby retaining 

compatibility with constrained devices while benefiting from locally derived state on richer 

platforms. 

[0019] The trust slope 150 thereby encodes continuity of identity over time as a sequence of 

dynamic hashes, each step bound to either the hardware anchor 108 with the volatile salt 109, the 

local state vector 105 with the extractor 106, or both. Mutation classes 160 are recorded for each step 

to preserve semantic provenance, and arrows 170a–170d indicate that the process is append-only. 

The construction enables verifiable identity in disconnected or asynchronous networks, because 

validation of the successor relationship between DAHₜ and DAHₜ₋₁ does not require access to 

external authorities, keys, or registries. 

3. Stateless Symmetric Encryption  

[0020] FIG. 4 illustrates an exemplary process 400 in which a sender 401 derives a symmetric 

encryption key from a recipient’s 407 current DDH or DAH by applying a key-derivation function to 

the recipient identity and a domain-separating context 402. The sender then performs authenticated 

encryption over the payload, embedding an additional copy of the sender’s current DAH inside the 

ciphertext for payload-layer verification 403. The resulting message 404 contains the header DAH 

405 and the encrypted payload 406. When the local-state embodiment is used for identity, the 

recipient’s DDH or DAH that seeds key derivation is produced from a local state vector and 

extractor as described previously; when the hardware-anchor embodiment is used, the recipient 

identity is produced from a hardware anchor combined with a volatile salt; when a hybrid technique 

is used, both sources contribute to the same identity value for key derivation. 

[0021] Upon receipt 409, the node performs a two-stage validation. First, the node evaluates the 

header DAH 410 against its last trusted successor 411 by applying a fast continuity check 412 that 

confirms the presented header is an on-slope successor relative to stored state; if continuity cannot 

be established from immediately available checkpoints, the node may defer final acceptance 413 

until a bounded proof or checkpoint is obtained as described in Section 4. If the check passes 414, 
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the node derives a decryption key from its own current DDH or DAH using a key-derivation step 

420 and attempts decryption 430 of the payload 406. Successful decryption demonstrates that the 

payload was encrypted for the correct memory-resolved identity state of the recipient at the time of 

transmission. 

[0022] Following decryption, the node extracts the embedded sender DAH 440 from the 

plaintext and compares it to the expected successor on the sender’s trust slope using the receiver’s 

stored reference and policy-defined continuity bounds. This payload-layer comparison provides 

semantic authentication independent of the transport header, ensuring that both routing-level and 

content-level integrity are satisfied before the message is accepted 450. If either stage fails 460, the 

node records a rejection 470, optionally degrades the sender’s trust score 480 under local policy, and 

may place the message or sender into quarantine 490 for subsequent review. 

[0023] In deployments where the sender 401 lacks the recipient’s 407 current DAH or DDH, the 

sender derives the symmetric key from the most recent trusted recipient anchor or epoch and 

transmits a first attempt under a bounded rekey failure rate. Upon decryption failure, the sender 

initiates a fallback comprising either (i) a short challenge–response rekey handshake scoped to the 

recipient’s current epoch or (ii) a checkpoint request that yields a bounded proof window sufficient 

to advance to the current recipient identity. The two-stage authentication thereafter proceeds using 

the updated recipient identity without reliance on external certificate authorities or persistent key 

exchange. 

[0024] The foregoing allows for stateless operation. The sender and recipient maintain no long-

lived session material; all keys are derived transiently from DAH/DDH values that themselves are 

produced by the identity update rules. In embodiments where the local-state vector produces the 

identity token via an extractor, stability-tuned projections and error-tolerant sketches ensure that 

small fluctuations in local measurements do not cause spurious decryption failures, while genuine 

role or context changes intentionally alter the recipient identity and force rekeying. In embodiments 

where the hardware anchor and volatile salt produce identity, freshness is preserved by the per-epoch 

salt, and in hybrid embodiments both inputs are hashed into the same identity value to improve 

robustness across devices and environments. 

[0025] An implementable embodiment aligned with the attached reference code performs, at the 

sender, a key derivation from the recipient’s current identity using a domain-specific context string 
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and applies authenticated encryption to the payload while embedding the sender’s current DAH 

inside the ciphertext; at the receiver, a corresponding derivation from its current identity reproduces 

the symmetric key to decrypt the payload, after which the embedded sender DAH is verified against 

the stored sender slope. In all cases, header validation, recipient-bound key derivation, payload 

decryption, embedded DAH comparison, and failure outcomes are process flows rather than 

hardware links and are driven entirely by the memory-native identity substrate and local policy. 

4. Trust Slope Validation and Resistance to Spoofing and Replay 

[0026] FIG. 5 illustrates a process 500 for the validation of an incoming identity claim against a 

previously trusted trust slope to resist spoofing, forgery, and replay. A stored trust slope 501 

comprises successive dynamic identities DAH₁ 502, DAH₂ 503, and DAH₃ 504 derived under the 

update rules disclosed herein. Upon receipt of a message or agent presentation bearing a claimed 

identity DAH_x 510 in its transport header, the executing node evaluates whether the claim is an on-

slope successor relative to its last trusted state under policy-defined continuity bounds. 

[0027] In one embodiment, the node performs a fast continuity comparison 520 by 

reconstructing the expected successor neighborhood from the most recent trusted value (e.g., DAH₃ 

503) and verifying that the presented DAH_x 510 is a valid successor. When the local-state 

embodiment is used, continuity bounds are enforced using a stability-tuned acceptance radius over 

extractor outputs computed from local state vectors; when the hardware-anchor embodiment is used, 

bounds are enforced using per-epoch salt freshness and cadence constraints; when a hybrid 

embodiment is used, both checks are applied. If the claim satisfies continuity, the node classifies it 

as in-slope 530 and proceeds 560; otherwise, the claim is classified off-slope 540 and treated as a 

probable spoof or forgery. 

[0028] In embodiments employing stability-tuned local state vectors, the node may optionally 

validate a short distance sketch accompanying the claim to confirm that the extractor output 

corresponding to DAH_x 510 would lie within a policy-defined neighborhood, without revealing the 

underlying local state. In hardware-anchor embodiments, the node verifies that the volatile salt used 

to derive the presented successor is fresh relative to prior observations and expected cadence. Either 

path preserves deterministic rejection of off-manifold or stale claims without reliance on external 

registries or long-lived keys. 



10 Attorney Docket No. 20596-005USU1

[0029] Replay resistance is achieved by binding acceptance to monotonic progression along the 

trust slope and by enforcing non-reuse of previously accepted successors within a policy horizon. If 

the presented DAH_x 510 equals a previously accepted value for the same sender and context, or if 

it regresses behind the node’s last trusted state, the node rejects the presentation as a replay or 

regression. Policy may optionally require that accepted successors advance a local epoch counter or 

satisfy a minimum inter-step interval to mitigate rapid replays. 

[0030] Failure outcomes 545 are recorded with explicit reasons 550, which may include 

continuity violation, neighborhood mismatch, salt staleness, cadence anomaly, or replay detection. 

Based on local policy, the node may immediately reject the claim, degrade the sender’s trust score, 

or place the sender into quarantine pending further evidence. When continuity is established, the 

node accepts the claim, updates its stored reference, and appends a validation trace to its local 

memory. 

[0031] The foregoing validation operates identically across both unpredictability sources. In the 

hardware-anchor embodiment, successors are verified using per-epoch salted derivations of the static 

anchor; in the local-state embodiment, successors are verified using extractor tokens derived from 

stability-tuned local state vectors; in the hybrid embodiment, both sources are incorporated into each 

successor, and either’s anomaly is sufficient to fail continuity. Arrows in FIG. 5 indicate process 

flows rather than hardware connections, and acceptance or rejection decisions (530, 540) are driven 

entirely by locally available trust-slope lineage and policy without external authorities. 

5. Agent Mutation and Substrate Entanglement Mechanisms 

[0032] As used herein, an “agent” refers to a cryptographically signed, memory-bearing data 

object that acts as a protocol operand within the disclosed substrate and includes a unique identifier, 

a payload, a memory field, a transport header, and a cryptographic signature, and participates in 

trust-slope formation and validation as described herein. A “semantic agent” is a specialized agent 

that additionally comprises an intent field and cognition-compatible structure enabling policy-aware 

mutation, delegation, and context-sensitive execution. FIG. 7 illustrates a process 700 for secure 

agent mutation with substrate entanglement, in which each agent-side identity transition  

[0033] A host node N₁ 701 maintains a current Dynamic Device Hash (DDH₁,t) 702 computed 

under the update rules of Section 2. In one embodiment, DDH₁,t 702 is derived from a static 

hardware anchor combined with a volatile salt; in another embodiment, it is derived from a local 
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state vector processed by a strong extractor; in a hybrid embodiment, both contributions are included 

in the same update. The host also maintains local context and entropy inputs e₁,t 703 used to 

parameterize mutation policy for the current epoch. An incoming semantic agent A with prior 

Dynamic Agent Hash DAH_{A,t−1} 704 is admitted to the execution context of N₁ 701. 

[0034] When agent A initiates a mutation (e.g., role change, delegation, policy commit, or 

semantic state transition), the host computes a mutation class indicator m_t 705 and derives a host 

mutation token μ₁,t 710/711 bound to the then-current DDH₁,t 702. In one embodiment, μ₁,t 711 is 

computed as H(DDH₁,t ∥ m_t ∥ epoch_t); in another embodiment, μ₁,t 711 is a commitment that 

additionally binds stability-tuned features of e₁,t 703. The agent’s successor identity DAH_{A,t} 720 

is then computed as DAH_{A,t} = H( DAH_{A,t−1} ∥ μ₁,t ∥ Ext(X_{A,t}) ∥ salt_{A,t} ∥ tag ), 

where Ext(X_{A,t}) is the agent-side extractor output derived from the agent’s memory field and 

semantic context at time t, salt_{A,t} is a volatile agent salt, and tag is a domain separator. In 

embodiments where the agent does not maintain an agent-side extractor, the term Ext(X_{A,t}) is 

omitted and μ₁,t 711 remains the sole mutation driver together with DAH_{A,t−1} 704 and 

salt_{A,t}. 

[0035] The host records an entanglement trace entry E₁,t 730 that includes (i) DAH_{A,t−1} 

731, (ii) DDH₁,t 732, (iii) μ₁,t 733, (iv) the resulting successor DAH_{A,t} 734, and (v) the mutation 

class m_t 735, and signs the entry with the host’s private key. The agent appends E₁,t 736 into its 

memory field and updates its cumulative commitment C_{A,t} 737 = H( C_{A,t−1} ∥ E₁,t ), 

providing forward-secure tamper evidence. Arrows 770a–770c indicate process flows rather than 

hardware connections. 

[0036] Validation of the entangled mutation is local and deterministic. A downstream verifier 

replays the agent’s mutation at step 740 by checking that DAH_{A,t} 734 is a valid successor of 

DAH_{A,t−1} 731 under the disclosed μ₁,t 733 and salt_{A,t}, verifies the host signature on E₁,t 

736, and confirms that μ₁,t 733 is consistent with the referenced DDH₁,t 721 and policy m_t 705. 

Because DDH₁,t 702 is itself produced under Section 2’s update rules (hardware-anchor plus salt; 

local-state plus extractor; or hybrid), an attacker lacking the host’s device identity inputs cannot 

synthesize μ₁,t 733 or forge E₁,t 736 to produce an acceptable DAH_{A,t} 741. 

[0037] Agents that traverse multiple substrates accumulate a verifiable trail of entangled 

mutations. As shown, when agent A later executes on node N₂ 750, the host’s current DDH₂,t+1 751 
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yields a new host mutation token μ₂,t+1 752, and the agent advances to DAH_{A,t+1} 753 with a 

corresponding entanglement trace E₂,t+1 754. A sequence of such entries forms a provenance path 

760 tying each agent-side identity transition to the specific host device on which it occurred, 

enabling distributed audit and forensic reconstruction without external registries or synchronized 

ledgers. 

[0038] The entanglement mechanism is agnostic to the unpredictability source used by the host. 

In the hardware-anchor embodiment, μ_{*,t} 733/752 incorporates freshness via per-epoch salts 

bound to a static anchor; in the local-state embodiment, μ_{*,t} 733/752 includes extractor outputs 

over stability-tuned local state; in a hybrid embodiment, both are concatenated within μ_{*,t}. In all 

cases, the verifying node fails closed if (i) the host signature on E_{*,t} is invalid, (ii) μ_{*,t} does 

not open to a host DDH consistent with policy, or (iii) DAH_{A,t} is not a valid successor under the 

disclosed materials. 

[0039] Entanglement traces may be authenticated by either (a) a host digital signature or (b) a 

message authentication code (MAC) keyed by a value derived from the contemporaneous DDH_t 

via a domain-separated key derivation function. In the MAC embodiment, keys are ephemeral and 

locally scoped to the host epoch and are never registered or reused across epochs, thereby preserving 

the “no persistent keypair” property while enabling verifiable entanglement. 

[0040] In embodiments employing signatures, the host may mint an ephemeral signing keypair 

per epoch and destroy the private key upon rotation; the entanglement trace includes an epoch 

identifier that opens to the host’s DDH_t under policy so that acceptance does not depend on long-

lived signing keys. 

[0041] By coupling agent mutation to host device identity, slope entanglement prevents off-

substrate evolution and detects out-of-band tampering. A purported successor lacking a coherent 

E_{*,t} 736/754, or referencing a host DDH that cannot be validated under local policy, is rejected 

at step 740, and the presentation may trigger trust degradation or quarantine per deployment policy. 

FIG. 7 thus demonstrates that each agent mutation step is verifiably anchored to a trusted device 

identity (702, 751), with process flows 770d–770f indicating process steps rather than hardware 

links. 

6. Construction and Validation of Append-Only Mutation Lineage Logs 
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[0042] FIGS. 8A and 8B illustrate a process 800 and components for implementing an append-

only mutation lineage that records the evolutionary history of a semantic agent’s identity as a 

tamper-evident sequence of entries. In FIG. 8A, a first lineage entry 810 captures an initial successor 

DAH₁ together with the host device identity DDH₁, a semantic context Ctx₁, and a timestamp T₁; the 

entry is classified with an initialization class indicator 812 and signed by the executing host. A 

subsequent entry 820 advances the agent identity to DAH₂ under a policy-driven mutation class 822, 

while a further entry 830 advances to DAH₃ under a migration class 832; each entry is produced by 

the successor rule that binds the prior agent identity, a host mutation token derived from the host 

DDH at the time of execution, and a freshness input comprising either a hardware-anchor-derived 

contribution, a local-state-vector extractor output, or both in a hybrid embodiment, as previously 

described with respect to agent–substrate entanglement. 

[0043] For each entry i, the agent computes the successor DAH_{i} as H(DAH_{i−1} ∥

μ_{host,i} ∥ Ext(X_{A,i}) ∥ salt_{A,i} ∥ tag) when the local-state embodiment is used, or as 

H(DAH_{i−1} ∥ μ_{host,i} ∥ KDF(HWID, salt_{A,i}) ∥ tag) when the hardware-anchor 

embodiment is used; in a hybrid configuration the extractor output and the hardware-anchor 

contribution are concatenated prior to hashing. Each lineage entry includes the prior DAH, the 

resulting DAH, the host DDH in effect at execution, the mutation class, and a timestamp, and the 

executing host appends a host-signed entanglement trace that binds μ_{host,i} to the disclosed DDH 

for the epoch. Arrows in FIG. 8A indicate process flows rather than hardware connections. 

[0044] Integrity of the lineage is preserved by a cumulative chain hash 845 that is updated at 

each entry; in one embodiment, the per-entry digest 846-848 is computed over the structured 

contents of the entry and then folded into the cumulative hash as C_{i} = H(C_{i−1} ∥), producing a 

forward-secure ledger in which any omission, reordering, or modification of entries is detected by 

divergence of the terminal cumulative value. In a size-bounded embodiment, periodic anchors 849 

are produced every J entries by hashing the then-current cumulative value with the prior anchor, 

enabling compact proofs over long histories without retaining all intermediate entries. 

[0045] Validation proceeds by bounded replay from a stored reference and the provided 

window of entries, as shown for example in FIG. 8B. A verifier issues a lineage request 860 and 

receives a proof window 865 comprising the referenced entries (e.g., 810, 820, 830), the 

corresponding host signatures, and either a terminal cumulative hash 845 or a set of periodic anchors 

849 sufficient to open the window against a previously trusted anchor. The verifier 870 checks that 
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each host signature is valid for the disclosed host identity, recomputes each successor DAH using the 

disclosed materials, confirms that the entanglement token for each step is consistent with the 

referenced host DDH and mutation class, and folds each per-entry digest (e.g., 846-848) to reach the 

terminal cumulative hash 845; acceptance 880 follows when the recomputed cumulative 875 value 

opens to the trusted anchor and all per-step checks succeed. 

[0046] Replay resistance and non-transferability are enforced during validation by rejecting any 

entry whose successor DAH is a regression relative to the verifier’s stored reference or whose 

freshness input is stale or inconsistent with policy cadence; entries that reproduce previously 

accepted successors for the same sender and context within a replay horizon are rejected as replays. 

Tamper attempts, including omission or reordering, are detected when the recomputed cumulative 

chain fails to match the provided 845 or cannot be opened against the periodic anchors 849, 

producing a tamper finding 890 recorded in local memory under policy. 

[0047] The lineage is agnostic to unpredictability source and supports domain-specific 

governance. When the hardware-anchor embodiment is used exclusively, the freshness input within 

each entry derives from a volatile salt keyed to a static hardware identifier; when the local-state 

embodiment is used exclusively, it derives from an extractor over a stability-tuned local state vector; 

when hybridized, both inputs are included to strengthen continuity across heterogeneous devices. 

Entries may include policy-relevant metadata such as mutation classes 812, 822, 832 and execution 

zone identifiers, enabling different trust domains to enforce local acceptance while preserving 

cryptographic interoperability through the cumulative chain 845 and anchors 849. 

[0048] By recording, signing, and chaining each identity transition, the append-only mutation 

lineage of FIGS. 8A and 8B provides verifiable provenance for semantic agents operating across 

decentralized substrates, enables incremental validation from recent anchors or comprehensive 

reconstruction from a prior trusted point, and detects spoofing, forgery, and replay attempts using 

only locally available materials and bounded proofs, without reliance on external authorities, 

persistent key registries, or synchronized ledgers. 

7. Cumulative Slope Validation Across Distributed Substrates 

[0049] FIG. 12 illustrates a process 1200 for cumulative validation of an agent’s identity slope 

as the agent migrates across multiple substrate nodes, with each mutation step entangled to the 

executing host’s device identity. A semantic agent A enters a first host node N₁ and advances from a 
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prior agent identity to a successor recorded as an entangled step E₁ 1220, bound to the host’s current 

Dynamic Device Hash DDH₁ 1210. The agent subsequently executes on nodes N₂ and N₃, producing 

further entangled steps E₂ 1222 bound to DDH₂ 1212 and E₃ 1224 bound to DDH₃ 1214, 

respectively. The sequence of entangled steps E₁–E₃ forms a tamper-evident multi-node path 1230 

capturing both identity evolution and execution provenance across substrates; arrows 1240a–1240c 

indicate process flows rather than hardware connections. 

[0050] In one embodiment, each entangled step Eᵢ 1220/1222/1224 is constructed according to 

the mutation mechanism described with respect to FIG. 7, wherein a host mutation token μᵢ is 

derived from the executing host’s current DDHᵢ (e.g., 1210, 1212, 1214) and a mutation class, and 

the agent’s successor identity is computed as H(DAH_{i−1} ∥ μᵢ ∥ freshness_i ∥ tag). The freshness 

input may be produced from a static hardware anchor combined with a volatile salt, from a local 

state vector processed by a strong extractor, or from a hybrid of both sources within the same step; 

all three embodiments are enabled and interoperable within the same cumulative path 1230. 

[0051] Each entangled step is recorded into the agent’s append-only lineage as a signed entry 

that includes the prior DAH, the resulting DAH, the executing host’s DDHᵢ (e.g., 1210, 1212, 1214) 

in effect at execution, the mutation class, and a timestamp. Per-entry digests are folded into a 

cumulative chain value and, in size-bounded embodiments, periodic anchors 1250-1252 are emitted 

at selected intervals to permit compact proofs across long multi-node traversals. Cross-domain 

context—such as zone or policy scope—is optionally recorded as a scope tag 1235 to support 

federation without centralized oversight. 

[0052] A verifier reconstructs the cumulative slope by requesting a windowed proof 1240 that 

spans one or more entangled steps (e.g., E₁ 1220 through E₃ 1224) and that opens against either a 

previously trusted anchor or a provided periodic anchor 1250-1252. During replay, the verifier 

confirms for each step that: the disclosed host signature is valid for the executing host; the host 

mutation token μᵢ opens to the recorded DDHᵢ (e.g., 1210, 1212, 1214) under local policy; the 

successor DAH recomputed from the disclosed materials matches the recorded successor; and the 

cumulative chain value at the end of the window opens to the trusted anchor. Successful 

reconstruction yields acceptance 1260; any inconsistency produces a tamper finding 1270 recorded 

to local memory. 
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[0053] The cumulative validation is agnostic to the unpredictability source used at each host. In 

the hardware-anchor embodiment, per-step freshness is enforced by non-repeating salts bound to a 

static device identifier; in the local-state embodiment, freshness derives from extractor outputs over 

stability-tuned local state vectors; in the hybrid embodiment, both contributions are concatenated, 

and failure of either contribution is sufficient to reject the step. Because validation proceeds by local 

replay from prior trusted points using bounded proofs and anchors 1250-1252, the mechanism 

tolerates disconnected or asynchronous operation and does not depend on external registries or 

synchronized ledgers. 

[0054] Where agents traverse administrative or trust boundaries, the scope tag 1235 enables 

policy-aware acceptance without global coordination: a verifier may require that steps carrying 

particular scope tags be corroborated by specific host roles or quorum attestations before the window 

1240 is accepted. By binding every agent-side mutation to a specific host DDH (1210, 1212, 1214) 

and chaining those steps into the cumulative path 1230 with periodic anchors 1250-1252, FIG. 12 

demonstrates end-to-end, multi-node provenance that is verifiable, replay-resistant, and tamper-

evident using only locally available materials and bounded disclosures. 

8. Recovery From Memory Loss: Quorum-Based Reauthorization 

[0055] FIG. 9 illustrates a process 900 for recovery of an agent’s trust slope after memory loss, 

entropy corruption, or discontinuity, using attestations from previously trusted peers rather than 

persistent credentials. An agent that detects the absence or invalidity of its stored lineage initializes a 

reseeded identity DAH₀* 910 and emits an attestation request 920 to peers known from prior 

interactions; the request is transmitted as a signed semantic agent carrying the new identity state, role 

and scope metadata, and any surviving anchors or checkpoint references. The lost-slope condition 

900 marks the start of the recovery process; arrows 940a–940c indicate process flows rather than 

hardware links. 

[0056] Each peer node evaluates the request 920 against locally retained evidence of prior 

continuity, including stored checkpoints and anchors, observed mutation classes, and execution 

context recorded in lineage logs. In embodiments employing stability-tuned local state vectors, a 

short distance sketch of the requester’s prior extractor outputs may be included to support bounded 

similarity checks without revealing raw local state; in hardware-anchor embodiments, freshness and 

cadence relative to prior salts are verified. A peer that finds the request consistent within policy 
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tolerances issues a signed attestation 930 in the form of a semantic agent that references the 

requester’s DAH₀* 910, cites the most recent trusted anchor or checkpoint for the requester, and 

records the peer’s own device identity and time of evaluation. 

[0057] Attestations 930 are accumulated and aggregated 940 under a quorum policy. In one 

embodiment, the aggregation step forms a recovery token 950 computed as a commitment over the 

requester’s DAH₀* 910, the set of validating attestations, and a policy identifier specifying quorum 

thresholds and weighting. The quorum policy may be defined by an adaptive consensus protocol, 

with eligibility, vote weights, and minimum counts determined by a referenced policy agent; the 

same process supports both count-based thresholds and trust-weighted thresholds that incorporate 

peer reputation or role scope. 

[0058] Upon meeting the quorum requirements, the recovery token 950 is accepted as a 

successor anchor for the requester’s identity and is appended into the requester’s lineage. Reinsertion 

960 attaches the requester to the distributed trust graph with a forward link from DAH₀* 910 to the 

accepted recovery anchor embodied by the token 950, enabling downstream verifiers to bridge the 

pre-loss and post-loss segments under local policy. Where insufficient attestations are received or 

where conflicts are detected, the requester remains quarantined or is directed to retry after additional 

observations. 

[0059] The recovery mechanism is agnostic to the unpredictability source used to form the 

requester’s new identity. In the hardware-anchor embodiment, DAH₀* 910 is derived from a static 

anchor and a volatile salt; in the local-state embodiment, DAH₀* 910 is derived from an extractor 

over a stability-tuned local state vector and a volatile salt; in a hybrid embodiment, both 

contributions are included. Peer evaluation remains local and deterministic in all cases, relying on 

previously retained checkpoints, anchors, and lineage evidence rather than external registries or 

static key material. 

[0060] Verification of the recovery token 950 by third parties proceeds by opening the 

aggregated attestations 930 against the signers’ identities and recomputing the commitment 

embodied by 950. Acceptance requires that the attesters be eligible under the referenced policy, that 

their signatures be valid, and that the attested linkage from the requester’s pre-loss anchors to 

DAH₀* 910 satisfy the quorum thresholds. Failure to satisfy any condition results in rejection and 
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optional trust-score adjustment for the requester or for misbehaving attesters, as dictated by local 

policy. 

[0061] By replacing persistent secrets with quorum-backed attestations grounded in local 

memory and prior observation, FIG. 9 provides a reauthentication path that preserves 

decentralization, tolerates disconnection, and resists spoofing and replay. The recovery token 950 

serves as a durable pivot point for subsequent validation, and the reinsertion step 960 restores 

continuity of the requester’s trust slope without reliance on centralized authorities or static keypairs. 

9. Entropy Anchor Rotation and Adaptive Slope Reinitialization 

[0062] FIG. 10 illustrates a process 1000 for rotation of an entropy anchor and adaptive 

reinitialization of a trust slope to preserve freshness, forward secrecy, and policy alignment over 

time. A slope health monitor 1005 evaluates one or more indicators of staleness, including elapsed-

epoch thresholds, drift or cadence anomalies in observed successors, entropy reuse heuristics, trust 

degradation events, or compromise signals emitted by the substrate. Upon detecting a condition that 

satisfies local policy, a staleness determination 1010 triggers reseeding. 

[0063] In response, a reseed command 1020 initiates generation of a new entropy anchor E₁ 

1030 and a corresponding initial identity DAH₀′ or DDH₀′ 1035. In a hardware-anchored 

embodiment, E₁ 1030 is derived from a keyed function of a static device identifier and a fresh 

volatile salt; in a local-state embodiment, E₁ 1030 is derived from a stability-tuned local state vector 

transformed by a strong extractor; in a hybrid embodiment, both contributions are included within 

the same derivation. The new initial identity 1035 is computed under the same update rule used 

throughout this disclosure with a versioned domain separator to distinguish anchor epochs. 

[0064] After anchor rotation, execution proceeds along a new trust slope indicated by process 

arcs 1040a–1040c. To preserve verifiability across the transition, a forward link 1050 is recorded 

that binds the terminal value of the prior anchor epoch to the new initial identity 1035. The forward 

link 1050 enables downstream verifiers to reconcile pre-rotation and post-rotation segments under 

policy without requiring global coordination or persistent registries. 

[0065] Rotation policy may sandbox or expire the prior slope. In one embodiment, the node 

designates the pre-rotation lineage as read-only and unavailable for future successor acceptance, 

marks it for archival 1075, and enforces replay prevention 1085 by rejecting presentations that reuse 
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identifiers from the expired epoch. In another embodiment, a grace window permits parallel 

acceptance of both epochs solely for bridging proofs that open through the recorded forward link 

1050. 

[0066] Certain embodiments support biometric-assisted reseeding as an optional source of fresh 

local unpredictability. A biometric capture 1060 (e.g., fingerprint, voiceprint, retinal, gait, or 

behavioral feature) is pre-processed at step 1062 and transformed by a privacy-preserving fuzzy 

extractor 1066 to yield a bounded seed 1064; optional liveness verification 1068 may be applied. 

The seed 1064 is never stored or exported in raw form and is used only locally to derive or augment 

the new anchor E₁ 1030. The biometric-assisted path composes with both the hardware-anchored and 

local-state embodiments by contributing additional non-exported unpredictability to the reseed 

command 1020. 

[0067] Validation under rotation is local and deterministic. A verifier that encounters a rotated 

identity requests or receives bounded proofs that include the forward link 1050 and the new initial 

identity 1035; the verifier then replays successors along arcs 1040a–1040c and confirms that the new 

epoch opens to the prior epoch through 1050 in accordance with policy. Because E₁ 1030 and 1035 

are produced by the same permitted sources—hardware anchor with volatile salt, local state vector 

with extractor, or hybrid—the verification logic is uniform across epochs. 

[0068] In privacy-sensitive deployments, the DAH presented in transport headers may rotate at 

a policy-defined cadence independent of payload semantics to reduce linkability. Verifiers reconcile 

rotations by opening forward links or anchors recorded for each header epoch, preserving 

auditability while limiting long-range correlation. 

[0069] As depicted in FIG. 10, entropy anchor rotation thus maintains high-entropy, memory-

resolved identity across a device or agent’s operational lifetime. The slope health monitor 1005 

detects staleness 1010, reseeding 1020 establishes a new anchor 1030 and initial identity 1035, 

execution continues along a fresh slope 1040a–1040c, and the forward link 1050 preserves auditable 

continuity while enabling expiration 1075 and replay protection 1085 for the prior epoch. All arrows 

indicate process flows rather than hardware connections. 

10. Delayed Validation for High-Latency and Intermittent Systems 
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[0070] FIG. 11 illustrates a process 1100 for delayed validation in environments where 

immediate continuity checking is impracticable due to latency, intermittent connectivity, or 

disconnection. A sender 1101 prepares a message bearing the sender’s current dynamic identity and 

a transmission timestamp T₀ 1110, together with a bounded set of mutation proofs 1120 that 

compactly represent the intervening trust-slope evolution since a previously trusted anchor. The 

proofs 1120 enable downstream reconstruction without requiring continuous synchronization or 

external registries. 

[0071] In one embodiment, the set of mutation proofs 1120 includes, for each missing step i in 

the transmission window, per-step materials sufficient to deterministically recompute the successor: 

an extractor token yᵢ 1122 derived from a stability-tuned local state vector with a per-step volatile 

salt, when the local-state embodiment is used; a keyed derivation κᵢ 1124 computed from a static 

hardware anchor and a per-step volatile saltᵢ, when the hardware-anchor embodiment is used; or both 

1122 and 1124, when a hybrid embodiment is used. The sender may also include an optional 

reference to the last periodic anchor Aₖ 1126 or a checkpoint identifier to assist bounded replay. 

[0072] Upon receipt, a verifier that lacks a recent anchor 1130 replays the intervening steps by 

iteratively applying the update rule with the disclosed per-step materials along process arcs 1140a–

1140c, starting from its last trusted value and proceeding forward to the presented identity associated 

with T₀ 1110. For each step, the verifier recomputes the successor from the immediately prior value 

and the disclosed token(s) and salt, and, when local-state tokens are used, may evaluate a 

neighborhood constraint under local policy to bound drift. When the chain opens to Aₖ 1126 or to the 

stored reference and the recomputed terminal value equals the presented value, validation succeeds 

and the presentation is accepted 1150. 

[0073] If the verifier’s stored state predates Aₖ 1126 or if the supplied proof set 1120 is 

insufficient to complete the replay, the verifier issues a checkpoint request 1160 and receives a 

bounded checkpoint response 1165 comprising either a newer anchor reference or an additional short 

proof window. Because each successor depends only on the immediately prior dynamic identity and 

the disclosed per-step materials, delayed verification remains local and stateless once the checkpoint 

is obtained. 

[0074] If replay fails—because a per-step token is inconsistent, a salt is stale relative to 

expected cadence, a neighborhood constraint is violated, or the recomputed terminal value does not 
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match the presented value—the verifier rejects the presentation 1155 under policy. Optional actions 

include trust-score adjustment or quarantine pending subsequent corroboration from anchors or 

peers. 

[0075] The delayed validation mechanism is agnostic to unpredictability source. In the 

hardware-anchor embodiment, the proofs 1120 convey keyed derivations 1124 that bind freshness to 

per-epoch salts; in the local-state embodiment, the proofs 1120 convey extractor tokens 1122 derived 

from stability-tuned local state vectors; in the hybrid embodiment, both are conveyed and 

concatenated in the update rule, and failure of either contribution is sufficient to reject the step. In all 

cases, acceptance 1150 requires strict monotonic progression within the proof window and prevents 

replay by disallowing reuse of previously accepted successors for the same sender and context. 

[0076] When header-level continuity validation succeeds yet payload decryption fails due to 

recipient identity drift, the recipient advertises its current anchor or checkpoint and the sender retries 

once using that anchor; failing that, the sender requests a bounded checkpoint response. Retries are 

limited by policy to a fixed attempt window to avoid oracle leakage while ensuring bootstrapping 

from sparse state. 

[0077] By allowing receivers to authenticate from sparse local state using bounded proof 

windows and optional checkpoints, the process outlined in FIG. 11 enables secure operation in 

stateless, intermittently connected, or long-duration disconnected deployments while preserving the 

memory-resolved authentication model and avoiding reliance on persistent credentials, centralized 

authorities, or synchronized ledgers. 

11. Sparse Trust Slope Recovery Using Embedded Checkpoints 

[0078] FIG. 2 illustrates a process 200 for sparse recovery of a trust slope in memory-

constrained deployments using embedded checkpoints and bounded proofs. A device or agent 201 

retains selected identities such as DAH₁ 210 and DAH₄ 215 together with a checkpoint C₂ 220 that 

summarizes all validated mutations up to the checkpoint epoch. When continuity must be re-

established from limited local state, a slope proof 230 provides only the per-step materials for the 

missing interval, allowing deterministic forward replay from C₂ 220 via a summarized replay group 

240, with the per-step procedure unrolled in FIG. 2A. 
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[0079] FIG. 2A depicts the unrolled procedure corresponding to the replay group 240 of FIG. 2. 

The verifier loads checkpoint C₂ 220 (step 242), selects a bounded proof window (step 244), and for 

each missing step i (step 245) obtains extractor token yᵢ 232 and/or keyed derivation Kᵢ 233 with saltᵢ 

(step 246). The verifier recomputes the successor DAHᵢ (step 248) and opens the per-entry 

commitment 236ᵢ; when a periodic anchor 238 is present the replay is opened to the anchor (step 

249). The replay index is advanced (step 252) and continuation is evaluated under the bounded 

window (step 254), where it is determined whether to continue window. If yes, return to step 246; if 

no, the window is done and so, upon this completion, a verified terminal for the window is emitted 

(step 256) and local state is updated for subsequent acceptance or checkpointing (step 258). 

[0080] In one embodiment, the proof 230 includes, for each step i after C₂ 220, an extractor 

token bundle 232 comprising yᵢ = Ext(Xᵢ) with a per-step volatile salt, when the local-state 

embodiment is used; in another embodiment, the proof includes a keyed-derivation bundle 233 

comprising KDF(HWID, saltᵢ) when the hardware-anchor embodiment is used; in a hybrid 

embodiment, both 232 and 233 are present and concatenated. The verifier recomputes successors as 

DAHᵢ₊₁ = H(DAHᵢ ∥ tokenᵢ ∥ saltᵢ ∥ tag) until the presented value (e.g., DAH₄ 215) is reached. 

[0081] Each step in the missing interval is also committed for tamper evidence. A per-entry 

commitment 236ᵢ = H(DAHᵢ ∥ tokenᵢ ∥ metaᵢ) is folded into periodic anchors 238 at window size J. 

The proof 230 supplies the siblings necessary to open 236ᵢ against C₂ 220 and the relevant anchor 

238, yielding validation success 250 when the recomputed chain matches the presentation. The 

verifier appends a verification trace to local memory 260 and may roll a new checkpoint C₄ for 

future sparse recovery. 

[0082] If the stored checkpoint is stale or unavailable, the verifier issues a checkpoint request 

270 and receives a bounded checkpoint response 275 containing either an updated checkpoint Cₖ or a 

short bridging proof window to the nearest trusted anchor. Because each successor depends only on 

the immediately prior DAH and the disclosed per-step materials (232, 233), reconstruction proceeds 

locally and does not require external registries, static credentials, or synchronized ledgers. 

[0083] The checkpoint mechanism is agnostic to unpredictability source. In the hardware-

anchor embodiment, freshness is enforced through per-epoch salts bound to a static device identifier 

and verified via 233; in the local-state embodiment, freshness derives from stability-tuned extractor 

tokens 232, optionally accompanied by a compact distance sketch evaluated at replay; in the hybrid 
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embodiment, both contributions must verify for acceptance. Policy controls the checkpoint cadence, 

trading storage overhead against replay effort: more frequent C_* checkpoints reduce reconstruction 

cost, while sparser checkpoints minimize storage at the expense of longer bounded proofs. 

[0084] By retaining sparse identities (210, 215), embedding checkpoints (220), verifying 

bounded proofs (230 with 232/233), opening commitments and anchors (236, 238), and supporting 

cursor movement via requests and responses (270, 275), the process outlined in FIG. 2 allows for 

verifiable recovery of identity continuity in memory-constrained or intermittently connected 

environments using only locally available materials and policy-bounded disclosures. 

12. Predictive Mutation Verification and Behavioral Drift Detection 

[0085] FIG. 6 illustrates a process 600 for predictive validation of agent and device identity by 

forecasting expected successor states and bounding acceptable deviation to detect drift or 

compromise prior to full slope discontinuity. A forecasting engine 605 operates over a history buffer 

610 comprising prior validated dynamic identities, mutation classes, and inter-step cadence statistics. 

From this buffer, a cadence estimator 612 and a role-transition model 614 produce forecast 

parameters for near-future epochs. 

[0086] In one embodiment, the cadence estimator 612 maintains an exponentially weighted 

moving average of inter-step intervals and a variance term to predict the expected timing window for 

the next successor. The role-transition model 614 encodes a finite-state transition matrix 

implementing a first-order Markov chain, in which each row specifies the conditional probabilities 

of transitioning from a current mutation class, semantic role, or scope tag to a successor class; the 

matrix is row-stochastic with nonnegative entries that sum to one. These predictions yield a most-

likely mutation class \hat{m}_{t+1} and a small set of alternates. The predicted attributes drive an 

expected-token generator 620 that forms a neighborhood envelope 622 for the next step on the trust 

slope. 

[0087] The expected-token generator 620 is compatible with both identity sources. In a local-

state embodiment, it projects recent local-state feature vectors into a stability-tuned space and 

computes a predicted extractor token \hat{y}{t+1} together with an acceptance envelope 622 

defined as a Hamming ball of radius r around \hat{y}{t+1} (i.e., all tokens whose Hamming distance 

from \hat{y}{t+1} is ≤ r), with r calibrated to observed intra-role variation. In a hardware-anchor 

embodiment, it predicts salt freshness and cadence bounds for the next per-epoch derivation, 
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yielding an acceptance window over salt reuse and timing. In a hybrid embodiment, both the 

\hat{y}{t+1} Hamming-ball envelope and the salt-cadence window are produced, and both must be 

satisfied during verification. 

[0088] The forecasting engine 605 emits an expected-identity set 630 that may include one or 

more predicted successors \widehat{\mathrm{DAH}}{t+1}, \widehat{\mathrm{DAH}}{t+2} (or 

\widehat{\mathrm{DDH}}_{\cdot} for devices) together with their acceptance envelopes 622 and 

expected inter-step timing. Upon receipt of a presentation bearing a claimed identity 640 (e.g., 

header DAH or embedded sender DAH as previously described), a comparator 650 evaluates 

whether the claim lies within the predicted envelope and within the cadence window. If so, the claim 

is classified as predicted-trajectory consistent and accepted 655 subject to normal continuity checks. 

[0089] Deviations are evaluated as behavioral drift. A drift detector 660 classifies out-of-

envelope claims by type, including cadence anomalies (early/late relative to the estimator 612), 

semantic divergence (unexpected mutation class relative to 614), and token-space deviation 

(exceeding the acceptance envelope 622 in the local-state embodiment). Policy actions may include 

trust-score adjustment 665, requirement for supplemental proof (e.g., a short bounded window from 

the sender), or quarantine 668 pending corroboration from peers or anchors. 

[0090] Predictive verification composes with delayed or sparse validation. When a verifier lacks 

an up-to-date anchor, it may still use the expected-identity set 630 to triage incoming traffic: claims 

far outside envelopes are rejected or quarantined immediately, while near-boundary claims are held 

until a checkpoint or short proof window arrives. Once checkpoint material is available, standard 

replay from the last trusted state confirms or refutes the prediction without reliance on external 

registries or static credentials. 

[0091] The predictive mechanism is agnostic to unpredictability source. In the hardware-anchor 

embodiment, the comparator 650 enforces salt freshness and cadence windows predicted by 612; in 

the local-state embodiment, it enforces neighborhood envelopes computed from stability-tuned 

projections; in the hybrid embodiment, both must hold. Forecast parameters are continuously 

updated from the history buffer 610 as new validated steps arrive, allowing the envelopes 622 to 

tighten or relax adaptively with observed behavior while preserving sensitivity to genuine role 

changes indicated by the transition model 614. 
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[0092] This combination of the forecasting engine 605, cadence estimator 612, role-transition 

model 614, expected-token generator 620 with acceptance envelopes 622, comparator 650, drift 

detector 660, and policy outcomes 655/665/668 provides early, local detection of compromise or 

unauthorized mutation while maintaining interoperability with the trust-slope continuity checks 

disclosed herein. Arrows in FIG. 6 indicate process flows rather than hardware connections. 

13. Compatibility with Legacy Systems Using Fallback Identifiers 

[0093] FIG. 3 illustrates a process 300 that allows for interoperability with legacy systems that 

rely on persistent public–private keypairs and PKI-style signatures, while preserving isolation from 

the memory-resolved trust slope. A fallback identifier is constructed for the sole purpose of a legacy 

session and is cryptographically segregated from Dynamic Agent Hash (DAH) and Dynamic Device 

Hash (DDH) evolution. 

[0094]  In one embodiment, a legacy-bridge adapter 310 generates a transient keypair 320 and a 

session nonce 322 scoped by a domain-separating context tag. The adapter derives a fallback 

identifier FID 330 as FID = H(PK_pub ∥ nonce ∥ ctx_tag), where PK_pub is the public key of 320. 

The FID 330 is maintained inside an isolation boundary 340 that prevents any use of PK_pub, the 

nonce 322, or the FID 330 in DAH/DDH update rules. A local, volatile mapping table 352 records 

{FID 330 ↔ session metadata} for the duration of the session only. 

[0095] For outbound interoperability, the adapter 310 composes a legacy message that carries 

FID 330 and a PKI signature 350 over the required legacy fields using the private key of 320. 

Transport and acceptance by the legacy counterparty proceed under its PKI policy 305, while the 

sender’s DAH/DDH slope remains unchanged and continues to govern local routing, caching, or 

semantic authorization. No fallback material is hashed into DAH/DDH, and no DAH/DDH material 

is exported to the legacy side. 

[0096] For inbound interoperability, the adapter 310 validates the counterparty’s PKI signature 

350 and resolves it to a local FID 330 via the mapping table 352. If local policy requires correlating 

the legacy session to a current DAH_t for auditing, the adapter may mint a one-way binding token 

355 that attests “FID 330 was serviced while DAH_t was active,” without allowing any legacy-

sourced material to influence successor computation on the trust slope. The binding token 355 is 

stored in a segregated audit log 380 and expires with the session. 
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[0097] Fallback lifecycle is strictly bounded. At session termination or policy-defined expiry, 

the adapter purges the mapping table entry 352, destroys the transient private key of 320, and marks 

FID 330 invalid via teardown 360. Optional revocation metadata 362 can be emitted to prevent reuse 

by intermediaries. Because no DAH/DDH update ever incorporates PKI artifacts, teardown 360 

cannot perturb the trust slope. 

[0098] The isolation boundary 340 enforces non-contamination in both directions. Cross-

contamination detection 370 fails closed if any attempt is made to (i) inject PKI-derived values into 

DAH/DDH successors, (ii) export DAH/DDH internals to satisfy legacy authentication, or (iii) 

extend a legacy identifier beyond its declared context. Policy may additionally constrain fallback use 

to whitelisted legacy domains or require human-in-the-loop approval for high-sensitivity scopes. 

[0099] The mechanism is agnostic to unpredictability source. Whether DAH/DDH is formed 

from a hardware anchor with volatile salt, a local state vector with extractor, or a hybrid of both, the 

legacy bridge 310 operates purely at the adapter boundary and does not alter slope formation, 

continuity checks, lineage chaining, delayed verification, or checkpoint replay. 

[0100] By confining FID 330 and PKI signature 350 to a segregated adapter path with explicit 

teardown 360, and by recording only one-way attestations 355 in an audit log 380, FIG. 3 

demonstrates compatibility with legacy ecosystems without diluting memory-native authentication 

or enabling persistent surveillance of identity evolution. Arrows in FIG. 3 indicate process flows 

rather than hardware connections. 

14. Cryptographic Threat Model and DSM Defense Surface 

[0101] The Dynamic Signature Mesh (DSM) defines an adversarial model and corresponding 

defense surface for memory-resolved authentication in decentralized substrates. Unlike public-key 

infrastructures that depend on persistent private keys and hierarchical anchors, DSM validates 

identity as deterministic progression along a trust slope whose successors are derived from locally 

retained unpredictability and semantic context. The model applies to embodiments that derive 

dynamic identities from a hardware anchor with per-epoch volatile salt, from a stability-tuned local 

state vector processed by a strong extractor, or from a hybrid that concatenates both sources. 

[0102] Resistance to static-key compromise follows directly from the absence of long-lived 

secrets in the authentication path. A Dynamic Agent Hash (DAH) or Dynamic Device Hash (DDH) 
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is ephemeral, computed per step, and never reused as a standing credential. Observation or 

disclosure of any single DAH/DDH does not enable impersonation because acceptance requires 

monotonic progression from a prior trusted state under the published update rule and policy-bounded 

continuity checks. 

[0103]  Spoofing and impersonation are mitigated by on-slope continuity verification and 

substrate entanglement. A claimant must present a successor that is a valid descendant of the 

verifier’s last trusted state and, for agent mutations, must open the host entanglement trace that binds 

the step to a specific device identity at execution time. In the hardware-anchor embodiment, per-

epoch salts and cadence bounds prevent reuse; in the local-state embodiment, neighborhood 

envelopes over extractor outputs enforce role-consistent drift; in the hybrid embodiment, failure of 

either contribution is sufficient to reject the claim. 

[0104] Replay is prevented by enforcing non-repetition within a policy horizon and by requiring 

forward movement along the slope. Presentations equal to previously accepted successors, 

regressions behind the verifier’s stored reference, or claims outside the expected inter-step timing 

window are rejected and may trigger automatic trust degradation or quarantine as specified by local 

policy. 

[0105] Message-layer integrity composes with identity verification through two-stage 

authentication. A transport header DAH is screened for continuity prior to decryption; the payload is 

then decrypted under a key derived from the recipient’s current identity and must contain an 

embedded copy of the sender’s DAH that is itself validated against the sender’s slope. Failure at 

either stage yields deterministic rejection and optional policy actions without reliance on external 

registries. 

[0106]  Tamper detection over historical evolution is provided by forward-secure commitments 

and periodic anchors on lineage logs. Each entry folds into a cumulative chain; omission, reordering, 

or modification of any entry diverges the terminal value and fails opening against the last anchor. 

Sparse and delayed verification remain secure because bounded proof windows disclose only per-

step materials sufficient for local recomputation and commitment opening, never raw local state 

vectors or static device secrets. 

[0107] Quantum threats are addressed by avoiding hardness assumptions vulnerable to Shor’s 

algorithm. Security reduces to the unpredictability of per-step inputs and the preimage resistance of 
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the employed hashes and extractors. Let λ denote the min-entropy (in bits) of the per-step 

unpredictability contribution after extraction; an offline next-step forgery then has success 

probability approximately 2^{−λ} (i.e., two raised to the negative λ). In the presence of quantum 

amplitude-amplification search (e.g., Grover’s algorithm), generic attacks achieve only a quadratic 

speedup, yielding success probability approximately 2^{−λ/2}. Parameter selection (e.g., 256–512-

bit extractor outputs and 256–512-bit hash digests) provides conservative margins. 

[0108] Side-channel and co-residency risks are bounded by locality and diversification. In the 

hardware-anchor embodiment, salts are single-use and bound to epochs, preventing cross-context 

replay even if a salt is observed. In the local-state embodiment, only short, error-tolerant sketches 

may be disclosed for neighborhood checks; sketches are non-invertible and insufficient to 

reconstruct raw state. Optional biometric reseeding augments, but never replaces, these sources and 

is confined to privacy-preserving fuzzy extractors with liveness verification. 

[0109] Host compromise and off-substrate mutation are contained by entanglement and 

signatures on mutation traces. A verifier requires that each agent-side mutation include a host-signed 

trace whose mutation token opens to the asserted host DDH under policy; steps lacking a coherent 

entanglement proof fail closed. Entropy-anchor rotation with forward links permits proactive refresh 

without abandoning auditability and prevents stale-epoch replay across anchor boundaries. 

[0110] Cross-protocol and downgrade attacks are mitigated by strict isolation of legacy 

interoperability. Fallback identifiers and PKI signatures are confined to a segregated adapter whose 

materials are never hashed into DAH/DDH updates; any attempted mixing of PKI artifacts with 

slope formation triggers fail-closed detection. Session-scoped mappings and explicit teardown 

prevent persistence or surveillance across epochs. 

[0111] Flooding and admission-control threats are addressed by early discard on header 

continuity failure, by mandatory replay protection, and by policy-driven rate limits keyed to sender 

slope state. Nodes may degrade trust on repeated near-misses, require supplemental bounded proofs, 

or quarantine sources exhibiting cadence or neighborhood anomalies. 

[0112] To constrain cross-correlation and token malleability, extractor tokens and any optional 

sketches are domain-separated by a fixed public seed and context tag per deployment and are never 

reused across domains. Validation applies policy-defined acceptance envelopes that bound token-
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space neighborhoods; presentations outside the envelope are classified as off-manifold drift and fail 

closed without disclosing raw local state vectors. 

[0113] Receivers implement a two-epoch acceptance window (current epoch and immediately 

prior) and per-sender rate limits keyed to header continuity to mitigate denial-of-service conditions 

when senders encrypt under stale recipient identities. Failure responses are opaque and do not leak 

rekey status; repeated failures degrade trust under policy and may require a checkpoint-based retry 

before further processing. 

[0114] Linkability is further constrained by header-level DAH rotation on a fixed cadence with 

forward links, preventing persistent correlation of activity while maintaining verifiable continuity 

under bounded proofs. 

[0115] Collectively, these mechanisms establish a defense surface that resists static-key 

compromise, spoofing, replay, mutation tampering, predictive entropy attacks, quantum acceleration, 

host compromise, and cross-protocol contamination while remaining compatible with stateless, 

intermittent, and federated operation. The protections operate uniformly across hardware-anchor, 

local-state, and hybrid embodiments and require only locally available materials, checkpoints, and 

bounded disclosures. 

15. Deployment Environments and Cognition-Native Adaptability 

[0116] The disclosed mechanisms are deployable across heterogeneous substrates, including 

stateless execution fabrics, intermittently connected networks, memory-constrained devices, 

decentralized multi-domain systems, and cognition-native agent platforms. In all such environments, 

identity is validated as progression along a trust slope formed from locally retained unpredictability 

and semantic context, without reliance on centralized authorities, long-lived credentials, or 

synchronized ledgers. 

[0117]  In stateless deployments—such as ephemeral edge workers, serverless functions, relay 

nodes, and mobile agents operating without durable storage—the system derives Dynamic Agent 

Hashes (DAHs) and Dynamic Device Hashes (DDHs) directly from locally available inputs under 

the update rules disclosed herein. A minimal conformance profile executes header continuity 

screening prior to decryption, derives a symmetric key from the recipient’s current identity, and 

appends bounded validation traces; optional checkpointing provides later reconstruction when 
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persistent storage is unavailable. Because no private key material or session state must be preserved 

across invocations, stateless operation remains fully interoperable with memory-aware peers. 

[0118] In high-latency, disrupted, or disconnected networks—such as delay-tolerant, mesh, 

opportunistic, or spaceborne links—the system authenticates using delayed verification and bounded 

proof windows. Senders embed per-step materials sufficient for local replay from the verifier’s last 

anchor; receivers reconstruct continuity upon reconnect without global synchronization. Sparse 

proofs and periodic anchors permit long-haul transit while preserving auditability and replay 

resistance. 

[0119]  In memory-constrained devices—including IoT sensors, wearables, embedded 

controllers, and ultra-low-power endpoints—the system employs sparse checkpointing and forward-

secure chaining to bound storage overhead. Devices retain only selected identities and anchors, 

reconstructing intervening steps on demand from compact proofs. Policy controls checkpoint 

cadence to trade storage for replay effort, and acceptance remains strictly local and deterministic. 

[0120] In decentralized and cross-domain environments—such as federated learning, distributed 

AI ecosystems, or multi-tenant data exchanges—the system supplies a substrate-independent trust 

layer. Nodes validate each other via memory-resolved behavior rather than external registries, 

enabling organic formation of trust graphs across administrative boundaries. Agent-side mutations 

are entangled to the executing host’s device identity, yielding verifiable provenance during 

migration and preventing off-substrate evolution. 

[0121]  In cognition-native platforms where agents are semantic, memory-bearing operands 

with intent fields and policy references, trust-slope continuity ties identity to behavioral integrity 

rather than static credentials. Agents can mutate, delegate, reclassify, or reindex under embedded 

policy while preserving verifiable lineage through entanglement traces, append-only mutation logs, 

and cumulative anchors. Predictive verification further anticipates near-term successors to surface 

drift prior to full discontinuity, improving containment and triage. 

[0122] The mechanisms are agnostic to unpredictability source. In one embodiment, per-step 

freshness is derived from a hardware anchor combined with a volatile salt; in another embodiment, 

from a stability-tuned local state vector processed by a strong extractor; in a hybrid embodiment, 

both sources are concatenated in the update rule. Optional entropy-anchor rotation with forward 
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links renews identity epochs without sacrificing auditability, and biometric-assisted reseeding may 

supply additional local unpredictability via privacy-preserving extractors and liveness checks. 

[0123] Because identity formation depends on local unpredictability, hash-based commitments, 

and bounded proofs—rather than hardness assumptions targeted by Shor-type attacks—the 

deployment model is inherently post-quantum aligned. Isolation of legacy interoperability to a 

segregated adapter prevents cross-protocol contamination, while two-stage authentication and strict 

replay controls provide early discard under load. Collectively, these properties support privacy 

preservation, operational autonomy, and verifiable provenance across next-generation distributed, 

stateless, and intelligent infrastructures. 

16. Definitions 

[0124] As used herein, “agent” refers to a cryptographically signed, memory-bearing data object 

that acts as a protocol operand within the disclosed substrate. An agent includes a unique identifier, a 

payload, a memory field, a transport header, and a signature, and participates in trust-slope formation 

and validation as described herein. 

[0125] As used herein, “semantic agent” refers to a specialized agent that additionally 

comprises an intent field and cognition-compatible structure enabling policy-aware mutation, 

delegation, and context-sensitive execution. All semantic agents are agents, but not all agents are 

semantic agents. 

[0126] As used herein, “policy agent” refers to an agent that encodes quorum rules, mutation 

eligibility criteria, role definitions, and related controls. A policy agent may be referenced from 

another agent’s memory field to govern eligibility, weighting, and thresholds during validation or 

consensus. 

[0127] As used herein, “substrate,” “host,” or “node” refers to a computational device or 

execution environment that processes agents and maintains a Dynamic Device Hash for its own 

identity state. 

[0128] As used herein, “Dynamic Agent Hash (DAH)” refers to an ephemeral, memory-

resolved cryptographic identifier generated by an agent as a successor of a prior trusted DAH under 

an update rule that incorporates at least one unpredictability contribution and a volatile salt, together 

with optional agent-side semantic features. 
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[0129] As used herein, “Dynamic Device Hash (DDH)” refers to an ephemeral, memory-

resolved cryptographic identifier generated by a device as a successor of a prior trusted DDH under 

an update rule that incorporates at least one unpredictability contribution and a volatile salt, together 

with optional device-side role or context features. 

[0130] As used herein, “trust slope” refers to the cumulatively validated sequence of DAHs or 

DDHs formed by successive, verifiable identity mutations. Trust-slope continuity denotes that a 

presented successor is a valid descendant of a previously trusted state under policy-bounded checks. 

[0131] As used herein, “entropy” refers to locally available unpredictability used in successor 

formation and validation. In one embodiment, entropy is derived from a static hardware anchor 

combined with per-epoch volatile salts; in another embodiment, entropy is derived from a stability-

tuned local state vector transformed by a strong extractor; in a hybrid embodiment, both sources are 

concatenated. For parameterization, λ denotes the effective min-entropy of the per-step contribution 

after extraction. 

[0132] As used herein, “entropy anchor” refers to the initial unpredictability state from which a 

trust slope originates for an agent or device. Anchors may be rotated proactively or reactively and 

may be linked forward to subsequent epochs for auditable continuity. 

[0133] As used herein, “local state vector (LSV)” refers to a bounded-dimension vector of 

locally observable device or execution signals (e.g., counters, timing jitter, I/O micro-variation, 

process mix features, or analogous signals) that, after normalization and projection, yields a stability-

tuned representation suitable for extraction without exposing raw state. 

[0134] As used herein, “extractor” or “strong randomness extractor” refers to a cryptographic 

function that derives a fixed-length, high-entropy token from the projected local state vector or other 

noisy input; the resulting extractor output is used in successor computation or disclosed in bounded 

proofs without revealing the underlying state. 

[0135] As used herein, “volatile salt” refers to a non-repeating freshness value scoped to a 

successor step or epoch and combined with other per-step inputs to prevent replay and cross-context 

reuse. 
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[0136] As used herein, “host mutation token” refers to a value derived from the executing host’s 

current DDH together with mutation class or epoch information, used to entangle an agent-side 

successor to the host on which the mutation occurred. 

[0137] As used herein, “slope entanglement” refers to the process by which an agent’s 

successor DAH is cryptographically bound to the executing host’s contemporaneous DDH via a host 

mutation token and a signed entanglement trace. 

[0138] As used herein, “entanglement trace” or “lineage entry” refers to a signed record 

appended to an agent’s memory capturing the prior DAH, the host DDH, the host mutation token, 

the successor DAH, the mutation class, and associated metadata for that mutation step. 

[0139] As used herein, “cumulative chain hash” refers to a forward-secure digest computed over 

the ordered lineage entries such that omission, reordering, or modification of any entry is detected by 

divergence of the terminal cumulative value. 

[0140] As used herein, “anchor” refers to a periodic digest computed at selected intervals over 

lineage or commitments to enable compact proofs across long histories; an anchor may be used to 

“open” a bounded window of entries during validation. 

[0141] As used herein, “checkpoint” refers to a retained, trusted state—embedded in an agent or 

stored by a verifier—that allows reconstruction of missing successors using bounded proofs without 

retaining full history. 

[0142] As used herein, “slope proof” refers to a bounded disclosure that includes per-step 

materials sufficient to deterministically recompute missing successors from a checkpoint or anchor 

without exposing raw local state or static device secrets. 

[0143] As used herein, “delayed validation” refers to authenticating a presentation after an 

interval of disconnection or latency by replaying successors from a stored checkpoint or anchor 

using a supplied slope proof. 

[0144] As used herein, “predictive validation” refers to forecasting near-term successors and 

acceptance envelopes from observed cadence, mutation classes, and role transitions, and comparing 

claimed successors to the forecast to detect drift prior to full discontinuity. 
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[0145] As used herein, “acceptance envelope” refers to a policy-defined bound used during 

validation or prediction—e.g., a token-space neighborhood radius in the local-state embodiment and 

a freshness/cadence window in the hardware-anchor embodiment. 

[0146] As used herein, “recovery token” refers to a commitment over a reseeded identity and a 

quorum of signed attestations that, when verified under policy, re-anchors an agent’s slope after 

memory loss or discontinuity. 

[0147] As used herein, “quorum-based reauthentication” refers to recovery of slope continuity 

using attestations from eligible peers under a referenced policy, without reliance on persistent 

credentials or centralized authorities. 

[0148] As used herein, “fallback identifier (FID)” refers to a session-scoped identifier derived 

from a transient public key and nonce for interoperability with legacy PKI systems, maintained 

within an isolation boundary and excluded from DAH/DDH formation. 

[0149] As used herein, “two-stage authentication” refers to header-layer continuity screening of 

a presented DAH prior to decryption, followed by payload-layer validation of an embedded sender 

DAH after decryption, with failure at either stage causing rejection. 

[0150] As used herein, “biometric-assisted reseeding” refers to optional contribution of local 

unpredictability derived from a biometric capture via a privacy-preserving fuzzy extractor with 

liveness verification, used only to augment reseed operations and never exported. 

[0151] As used herein, “scope tag,” “role,” or “mutation class” refers to policy-relevant 

metadata recorded with a successor that constrains eligibility, weighting, or acceptance under local 

policy during validation or consensus. 

[0152] As used herein, “Dynamic Signature Mesh (DSM)” refers to the memory-native 

authentication framework in which identity is validated as progression along trust slopes using local 

unpredictability, bounded proofs, and anchors, without persistent keys or centralized registrars. 

[0153] As used herein, “memory-resolved identity” refers to an identity model in which 

authentication depends exclusively on locally retained information—including unpredictability 

sources, lineage evidence, and policy-scoped traces—rather than on third-party attestations or long-

lived secrets. 
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[0154] As used herein, “Domain separation” means seeding extractors and KDFs with 

deployment-fixed public seeds and context tags such that tokens and keys are unlinkable across 

domains and epochs. 

[0155] As used herein, “near real-time” or “real time” describes a process that occurs or a 

system that operates to produce a given result with a slight but acceptable delay between the 

occurrence of an event, such as an acquisition of or update to relevant data, and when the given 

result is produced.  In the context of the present disclosure, a slight but acceptable delay is in the 

range of about 250 milliseconds. 

[0156] “About” when used herein with reference to a value or range is used in its plain and 

ordinary sense as understood by persons of ordinary skill in the art as referring to standard tolerances 

for the referenced parameter, and when standard tolerances are not applicable, a value or range of 

values defined with “about” is met when a change in the range or value changes the changes the 

performance characteristics of the relevant parameter or the performance characteristics of the 

system as a whole by not more than five percent (5%). 

[0157] The computer-based processing system and method described above may be 

implemented in any type of computer system or programming or processing environment, or in a 

computer program, alone or in conjunction with hardware. The present disclosure may also be 

implemented in software stored on a non-transitory computer-readable medium and executed as a 

computer program on a general purpose or special purpose computer. It is further contemplated that 

the present invention may be run on a stand-alone computer system, or may be run from a server 

computer system that can be accessed by a plurality of client computer systems interconnected over 

an intranet network, or that is accessible to clients over the internet.  
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What is claimed is: 

1. A computer-implemented method for memory-native two-stage authentication, comprising: 

generating, by a sender agent, a dynamic agent hash (DAH_t) as a successor of a prior trusted 

dynamic agent hash (DAH_{t−1}) generated by the sender agent, wherein the DAH_t is 

generated under an update rule that incorporates at least one unpredictability contribution 

and a volatile salt; 

deriving, by the sender agent, a symmetric encryption key from a current dynamic identity of 

a recipient selected from a recipient dynamic agent hash (DAH_R) or a recipient dynamic 

device hash (DDH_R); 

encrypting a payload with the symmetric encryption key and embedding within the encrypted 

payload an embedded sender dynamic agent hash (DAH_S) computed contemporaneously 

with the DAH_t; 

constructing, by the sender agent, a message comprising a transport header and the encrypted 

payload, and placing the DAH_t in the transport header and the DAH_S within the 

encrypted payload, wherein the message does not include the symmetric encryption key; 

transmitting, by the sender agent, the message to the recipient; 

receiving, by the recipient, the transmitted message and reconstructing, from a locally 

retained trust-slope state for the sender agent that includes at least the DAH_{t−1} most 

recently validated and previously accepted by the recipient, an expected successor 

candidate for time t under the update rule and within a recipient-defined set of policy-

bounded continuity parameters; 

validating, by the recipient, the DAH_t against an expected successor candidate; 

deriving, by the recipient, a recipient symmetric encryption key from a corresponding one of 

DAH_R or DDH_R and decrypting the payload; 

extracting, by the recipient, the DAH_S from the decrypted payload and validating the 

DAH_S against a reconstructed trust slope for the sender agent obtained by advancing the 

locally retained trust-slope state under the update rule and within the recipient-defined set 

of policy-bounded continuity parameters; and 

accepting, by the recipient, the message only upon successful validation of both the DAH_t 

and the DAH_S.  

2.  The method of claim 1, wherein the accepting and validating are performed without reliance 

on persistent private keys or external certificate authorities. 
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3. The method of claim 1, wherein the unpredictability contribution includes a keyed derivation 

from a static hardware anchor and a volatile per-epoch salt. 

4. The method of claim 1, wherein the unpredictability contribution includes an extractor output 

over a stability-tuned local state vector, the extractor output being used without exposing a raw 

local state. 

5. The method of claim 1, wherein the update rule includes a hardware-anchor derivation and a 

local-state extractor output and wherein both the hardware-anchor derivation and the local-state 

extractor output are concatenated in the update rule. 

6. The method of claim 1, further comprising rotating an entropy anchor upon detection of 

staleness and recording a forward link configured to bind a terminal value of a prior epoch to a 

new initial identity, and rejecting identifiers from an expired epoch except for bridging proofs 

that open through the forward link. 

7. The method of claim 1, further comprising forecasting a near-term successor identity and an 

acceptance envelope based on cadence statistics and role-transition models; classifying a 

presented successor as consistent when the presented successor lies within the acceptance 

envelope; and degrading trust, requesting supplemental proofs, or quarantining when the 

presented successor falls outside the acceptance envelope. 

8. The method of claim 1, further comprising validating, prior to decryption, header-level 

continuity of the DAH_t against an expected successor and, after decryption, validating payload-

level continuity of the DAH_S against a reconstructed trust slope, and rejecting the message 

without external registry lookup upon failure of validation of either header-level continuity of the 

DAH_t or payload-level continuity of the DAH_S. 

9. The method of claim 1, wherein the symmetric encryption key is derived via a key derivation 

function keyed by the DAH_R or DDH_R and a context tag, and wherein no asymmetric key 

exchange is performed. 

10. The method of claim 1, wherein, when the sender agent cannot derive a symmetric key 

from the DAH_R or DDH_R, deriving, by the sender agent, a provisional key from a last trusted 

recipient anchor and, upon decryption failure, performing, by the sender agent, a fallback 

including a checkpoint request that yields a bounded proof window or a short challenge–

response rekey handshake. 

11. The method of claim 10, further including retrying, by the sender agent, decryption within a 

policy-bounded attempt window. 
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12. The method of claim 1, further including separating by domain extractor tokens by a fixed 

public seed and context tag per deployment, and enforcing by validation an acceptance envelope 

that rejects off-manifold drift without exposing raw local state vectors. 

13. The method of claim 1, further including applying, by the recipient, a two-epoch acceptance 

window for recipient identity, enforcing per-sender rate limits on failed decryptions, and 

emitting opaque failure codes to prevent oracle leakage. 

14. The method of claim 1, further comprising rotating the DAH_t presented in the header at a 

policy-defined cadence independent of payload semantics. 

15. The method of claim 1, wherein deriving the symmetric key includes performing a key 

derivation function keyed by the DAH_R or DDH_R and a domain-separated context tag, and 

wherein the derived key expires with a recipient epoch to prevent cross-epoch decryption. 

16. A system for agent mutation entanglement, comprising:  

a host device configured to compute a dynamic device hash (DDH_t) as a successor of a prior 

dynamic device hash (DDH_p) under an update rule that incorporates at least one 

unpredictability contribution and a volatile salt;  

a semantic agent configured to execute on the host device and to compute a successor dynamic 

agent hash (DAH_s) from a prior dynamic agent hash (DAH_p) and a host mutation token 

derived from the DDH_t and a mutation class associated with the host device;  

an entanglement module configured to emit a signed entanglement trace that records DAH_p, 

DDH_t, the host mutation token, DAH_p, and mutation metadata; and  

a validator configured to accept DAH_s only if the entanglement trace opens to DDH_t under 

policy and DAH_s is a valid successor of DAH_p. 

17. The system of claim 16, wherein the host mutation token comprises a cryptographic hash of 

DDH_t, mutation class, and epoch information, and the entanglement trace includes a signature 

of the host device. 

18. The system of claim 16, further including a monitoring module configured to detect invalid 

entanglement, cadence anomaly, neighborhood mismatch of extractor outputs, and stale salt, and 

to degrade trust-score of the semantic agent or quarantine the semantic agent upon detection of 

invalid entanglement, cadence anomaly, neighborhood mismatch of extractor outputs, or stale 

salt. 

19. The system of claim 16, wherein the semantic agent includes a policy reference to a policy 

agent that specifies quorum roles, voting weights, and eligibility for mutation validation, and is 
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configured to accept entangled mutations only when quorum roles, voting weights, and eligibility 

for mutation validation are consistent with the policy. 

20. The system of claim 16, further including a message authentication code configured to 

authenticate the entanglement trace by a value derived from DDH_t under a domain-separated 

key derivation function in lieu of a digital signature, wherein the key is ephemeral and locally 

scoped to an epoch of the host device. 

21. The system of claim 16, wherein the host device is configured to employ an ephemeral 

signing keypair minted per epoch and destroyed upon rotation, and including a verifier 

configured to accept the entanglement trace only when an epoch identifier opens to DDH_t under 

policy. 
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Abstract 

Memory-native authentication in distributed environments is provided in which agents and devices 

form dynamic identities as successors along a trust slope using locally retained unpredictability and 

policy context, without persistent private keys. A Dynamic Agent Hash (DAH) and a Dynamic 

Device Hash (DDH) are computed from a prior state and either a hardware-anchor with volatile salt 

or  a stability-tuned local state vector processed by a strong extractor, or a hybrid thereof. Messages 

employ two-stage validation: a header DAH for transport continuity and an embedded sender DAH 

inside the encrypted payload, where the symmetric key is derived from the recipient’s current 

DAH/DDH. Agent mutations are entangled to host DDHs and recorded in an append-only lineage 

with periodic anchors, enabling delayed and sparse verification, predictive drift detection, entropy-

anchor rotation, and quorum-based recovery after memory loss. An isolated fallback identifier 

supports legacy PKI interoperability.  
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