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is part of the specification and is incorporated in its entirety by reference.

FIELD
[0003] The present disclosure generally relates to cryptographic systems and methods for
determining digital identify and authentication, and more specifically to systems and methods for

memory-native identity and authentication without keypairs.

BACKGROUND

[0004] Conventional digital identity and authentication systems rely on persistent public-private
keypairs and signature-based validation mechanisms. These systems expose users and devices to
various vulnerabilities, including key compromise, metadata correlation, certificate revocation
failure, and susceptibility to quantum cryptographic attacks. Public key infrastructure (PKI) typically
requires centralized trust anchors, global registries, and persistent key material, making it unsuitable
for decentralized, memory-constrained, or privacy-sensitive environments. Moreover, in ephemeral
or cognition-native systems—such as distributed Al agents or stateless substrates—the requirement
to maintain static credentials is impractical or infeasible. Accordingly, there is a need for systems

and methods that address these shortcomings.
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SUMMARY OF THE DISCLOSURE

[0005] A computer-implemented method for memory-native two-stage authentication includes
generating, by a sender agent, a dynamic agent hash (DAH t) as a successor of a prior trusted
dynamic agent hash (DAH_ {t—1}) generated by the sender agent, wherein the DAH t is generated
under an update rule that incorporates at least one unpredictability contribution and a volatile salt,
deriving, by the sender agent, a symmetric encryption key from a current dynamic identity of a
recipient selected from a recipient dynamic agent hash (DAH_R) or a recipient dynamic device hash
(DDH_R), encrypting a payload with the symmetric encryption key and embedding within the
encrypted payload an embedded sender dynamic agent hash (DAH_S) computed contemporaneously
with the DAH t, constructing, by the sender agent, a message comprising a transport header and the
encrypted payload, and placing the DAH _t in the transport header and the DAH_S within the
encrypted payload, wherein the message does not include the symmetric encryption key,
transmitting, by the sender agent, the message to the recipient, receiving, by the recipient, the
transmitted message and reconstructing, from a locally retained trust-slope state for the sender agent
that includes at least the DAH_{t—1} most recently validated and previously accepted by the
recipient, an expected successor candidate for time t under the update rule and within a recipient-
defined set of policy-bounded continuity parameters, validating, by the recipient, the DAH t against
an expected successor candidate, deriving, by the recipient, a recipient symmetric encryption key
from a corresponding one of DAH R or DDH_R and decrypting the payload, extracting, by the
recipient, the DAH_S from the decrypted payload and validating the DAH_S against a reconstructed
trust slope for the sender agent obtained by advancing the locally retained trust-slope state under the
update rule and within the recipient-defined set of policy-bounded continuity parameters, and
accepting, by the recipient, the message only upon successful validation of both the DAH_t and the
DAH_S.

[0006] A system for agent mutation entanglement is provided that includes a host device
configured to compute a dynamic device hash (DDH t) as a successor of a prior dynamic device
hash (DDH_p) under an update rule that incorporates at least one unpredictability contribution and a
volatile salt, a semantic agent configured to execute on the host device and to compute a successor
dynamic agent hash (DAH_s) from a prior dynamic agent hash (DAH_p) and a host mutation token
derived from the DDH_t and a mutation class associated with the host device, an entanglement

module configured to emit a signed entanglement trace that records DAH_p, DDH t, the host
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mutation token, DAH_p, and mutation metadata, and a validator configured to accept DAH_s only if

the entanglement trace opens to DDH_t under policy and DAH_s is a valid successor of DAH p.

BRIEF DESCRIPTION OF THE DRAWINGS
[0007] For the purpose of illustrating the disclosure, the drawings show aspects of one or more
embodiments of the disclosure. However, it should be understood that the present disclosure is not

limited to the precise arrangements and instrumentalities shown in the drawings, wherein:

FIG. 1 illustrates components and steps of a lifecycle of a Dynamic Agent Hash (DAH) or Dynamic
Device Hash (DDH) within the Dynamic Signature Mesh (DSM) in accordance with an embodiment

of the present disclosure;

FIG. 2 illustrates a sparse slope reconstruction process from a checkpoint using bounded proofs and

periodic anchors in accordance with an embodiment of the present disclosure;
FIG. 2A illustrates a stepwise replay process of FIG. 2 in more detail;

FIG. 3 illustrates components for a process for fallback compatibility with legacy, signature-based

systems in accordance with an embodiment of the present disclosure;

FIG. 4 illustrates components of a DSM-secured message and steps for processing the DSM-secured

message in accordance with an embodiment of the present disclosure;

FIG. 5 shows a process for detection and rejection of spoofed or replayed identity claims in

accordance with an embodiment of the present disclosure;

FIG. 6 illustrates components and steps for predictive validation of agent and device identity in

accordance with an embodiment of the present disclosure;

FIG. 7 illustrates components and steps for agent-to-substrate slope entanglement in accordance with

an embodiment of the present disclosure;

FIGS. 8A and 8B illustrate an example of an append-only mutation lineage log for an agent in

accordance with an embodiment of the present disclosure;

FIG. 9 illustrates components and steps for quorum-based recovery after memory loss in accordance

with an embodiment of the present disclosure;
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FIG. 10 illustrates components and steps for rotation of an entropy anchor and adaptive

reinitialization of a trust slope in accordance with an embodiment of the present disclosure;

FIG. 11 shows components and steps for delayed slope validation under high-latency or intermittent

connectivity conditions in accordance with an embodiment of the present disclosure; and

FIG. 12 provides an overview of components and steps for determining cumulative slope
entanglement across multiple substrate nodes during agent migration in accordance with an

embodiment of the present disclosure.

DETAILED DESCRIPTION

1. Overview

[0008] An authentication architecture is needed that operates securely without persistent keys or
external verification authorities, and instead derives identity from locally retained, time-sensitive,
and context-aware behavioral information. A memory-native identity substrate is provided in which
a device or agent expresses identity as a trust slope—that is, the cumulatively validated sequence of
Dynamic Agent Hashes (DAHs) or Dynamic Device Hashes (DDHs) formed by successive,
verifiable identity mutations—rather than a static credential. Trust-slope continuity denotes that a
presented successor is a valid descendant of a previously trusted state under policy-bounded checks.
Each identity step is computed from the immediately prior step and a source of non-exported
unpredictability, enabling receivers to evaluate continuity and provenance locally, without reliance

on centralized authorities, long-lived keypairs, or synchronized registries.

[0009] In one embodiment, a static hardware anchor is combined with a volatile, non-repeating
salt to derive a per-epoch contribution. In another embodiment, a locally observed state is collected
into a local state vector and transformed by a strong extractor to yield a bounded pseudorandom
token; the token is then combined with a volatile salt. Either of these embodiments alone, or a hybrid
that incorporates both in the same step, produces a successor identity value bound to time, context,
and prior state. In this way, constrained devices can be accommodated that expose a hardware

identifier as well as richer platforms that can derive robust local state vectors.

[0010] The trust slope is append-only and verifiable: a receiver stores any previously trusted
step and evaluates a presented successor against policy-defined continuity criteria. Because each step

binds to the prior step and to non-exported unpredictability, an attacker lacking the device’s local
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state (or volatile salt) cannot feasibly synthesize valid successors. The continuity policy is tunable to
favor stability within a role or operating context while remaining sensitive to genuine context
changes. This may be achieved by constructing the local state vector with stability-preserving

projections and by verifying bounded drift with error-tolerant sketches.

[0011] Messages are constructed so that identity is bound at both transport and semantic layers.
A sender places the current dynamic hash in the message header for fast, stateless screening at the
receiver, and also embeds the same value inside the protected payload to bind semantics to transport.
In certain embodiments, payload confidentiality and integrity are derived from receiver-local identity
material (e.g., via a key derivation based on the receiver’s current dynamic hash), allowing two-stage
validation that rejects malformed traffic before decryption and prevents man-in-the-middle

substitution after decryption.

[0012] In addition, an append-only lineage mechanism is provided in which each identity step is
committed into a compact chain of commitments with periodic anchors. This permits sparse storage
at senders and receivers while enabling delayed or offline reconstruction of intervening steps. Where
recent anchors are missing or devices are intermittently connected, receivers request short proofs or
checkpoints and verify the recomputed path against stored anchors, preserving verifiability in delay-

tolerant and edge environments.

[0013] To maintain long-term health of the identity process, the system supports reseeding and
anchor rotation policies that detect staleness or environmental drift and initiate controlled re-
anchoring without breaking verifiability; forward links are recorded so downstream verifiers can
bridge old and new anchors under policy. In addition, a quorum-based recovery path allows a device
or agent to rejoin the trust graph after state loss by aggregating attestations from previously trusted

peers, with the recovery token recorded into lineage for downstream audit.
2. Identity Generation and Trust Slope

[0014] FIG. 1 provides a schematic overview of components and a process 100 for the
generation and evolution of a memory-native identity for a device or agent as a verifiable trust slope.
At initialization, a slope root 101 is established by computing a dynamic hash from one of two
exemplary ways. In the first, a static hardware anchor 108 (e.g., TPM, TEE, SoC identifier) is
combined with a volatile salt 109 to yield an unpredictable seed. In a second, a locally observed state

is collected into a local state vector 105, processed by an extractor 106 to produce a bounded
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pseudorandom token 107, and combined with a volatile salt 109. A semantic context vector 110 and
a memory state indicator 111 may be incorporated to bind role, zone, or process mix to the initial
identity. The resulting dynamic device or agent hash at epoch t=0 establishes DAHo/DDHo at the
slope root 101.

[0015] The initial identity is advanced by an update rule 112 that concatenates the prior hash
with a fresh entropy input and a domain-separating tag to yield the next step on the slope. In one
example, the update is computed as DAH; = H(DAH:-: || Ext(Xy) |l salt; || tag), where X is derived
from the local state vector 105 and Ext(-) denotes the extractor 106. Alternatively, the update is
computed as DAH; = H(DAH: || KDF(HWID, salt;) || tag) using the hardware anchor 108 and
volatile salt 109. These may be combined by hashing both inputs in a single step to increase
robustness. Application of the update yields successive identities DAH: 120, DAH: 130, and DAH3
140 along a verifiable trust slope 150, with arrows 170a—170d indicating the forward-only process

flow rather than hardware connections.

[0016] In the local-state embodiment, the local state vector 105 consists of device-observable
signals sampled within an epoch, including one or more of monotonic counters, high-resolution
timing deltas, CPU performance counters, scheduler jitter statistics, I/O inter-arrival micro-jitter,
optional sensor noise, rolling process histograms, and short-horizon sketches of recent dynamic
hashes. The feature map that produces X; from the local state vector applies normalization and
clipping to bounded ranges, projects to a fixed dimension via signed random projections with a
public seed, optionally appends a discrete context code derived from the semantic context vector
110, and applies a locality-sensitive binarization so that small fluctuations in the local state yield
stable X; while genuine role or zone changes flip a controlled subset of bits. The extractor 106 (e.g.,
a SHA-3/512-based KDF) maps X to the token 107 with collision and preimage resistance suitable

for use in the update rule described above.

[0017] To align with the example code in the Computer Program Listing, the following steps
may be performed within each epoch: compute X, from the local state vector 105 using the signed-
projection and locality-sensitive mapping just described; compute the token 107 as Ext(X;); compute
DAH; by hashing DAH: with the token 107, the volatile salt 109, and a domain-separating tag; and
record a mutation class 160 identifying the semantic reason for the step (e.g., role update, delegation,
policy commit). Each step appends a trace entry to the memory state 111, thereby enabling

downstream verification that DAH, is a valid successor to DAH-: on the trust slope 150.
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[0018] The hardware-anchor embodiment proceeds analogously but replaces the token 107 with
a keyed derivation from the hardware anchor 108 and the volatile salt 109. The volatile salt 109 is
non-repeating at the device and epoch level, ensuring unpredictability even if the hardware anchor
108 is constant. In the combined embodiment, both the token 107 and a key derivation from the
hardware anchor 108 are included in the same update to produce DAH;, thereby retaining
compatibility with constrained devices while benefiting from locally derived state on richer

platforms.

[0019] The trust slope 150 thereby encodes continuity of identity over time as a sequence of
dynamic hashes, each step bound to either the hardware anchor 108 with the volatile salt 109, the
local state vector 105 with the extractor 106, or both. Mutation classes 160 are recorded for each step
to preserve semantic provenance, and arrows 170a—170d indicate that the process is append-only.
The construction enables verifiable identity in disconnected or asynchronous networks, because
validation of the successor relationship between DAH; and DAH;-: does not require access to

external authorities, keys, or registries.
3. Stateless Symmetric Encryption

[0020] FIG. 4 illustrates an exemplary process 400 in which a sender 401 derives a symmetric
encryption key from a recipient’s 407 current DDH or DAH by applying a key-derivation function to
the recipient identity and a domain-separating context 402. The sender then performs authenticated
encryption over the payload, embedding an additional copy of the sender’s current DAH inside the
ciphertext for payload-layer verification 403. The resulting message 404 contains the header DAH
405 and the encrypted payload 406. When the local-state embodiment is used for identity, the
recipient’s DDH or DAH that seeds key derivation is produced from a local state vector and
extractor as described previously; when the hardware-anchor embodiment is used, the recipient
identity is produced from a hardware anchor combined with a volatile salt; when a hybrid technique

is used, both sources contribute to the same identity value for key derivation.

[0021] Upon receipt 409, the node performs a two-stage validation. First, the node evaluates the
header DAH 410 against its last trusted successor 411 by applying a fast continuity check 412 that
confirms the presented header is an on-slope successor relative to stored state; if continuity cannot
be established from immediately available checkpoints, the node may defer final acceptance 413

until a bounded proof or checkpoint is obtained as described in Section 4. If the check passes 414,
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the node derives a decryption key from its own current DDH or DAH using a key-derivation step
420 and attempts decryption 430 of the payload 406. Successful decryption demonstrates that the
payload was encrypted for the correct memory-resolved identity state of the recipient at the time of

transmission.

[0022] Following decryption, the node extracts the embedded sender DAH 440 from the
plaintext and compares it to the expected successor on the sender’s trust slope using the receiver’s
stored reference and policy-defined continuity bounds. This payload-layer comparison provides
semantic authentication independent of the transport header, ensuring that both routing-level and
content-level integrity are satisfied before the message is accepted 450. If either stage fails 460, the
node records a rejection 470, optionally degrades the sender’s trust score 480 under local policy, and

may place the message or sender into quarantine 490 for subsequent review.

[0023] In deployments where the sender 401 lacks the recipient’s 407 current DAH or DDH, the
sender derives the symmetric key from the most recent trusted recipient anchor or epoch and
transmits a first attempt under a bounded rekey failure rate. Upon decryption failure, the sender
initiates a fallback comprising either (i) a short challenge—response rekey handshake scoped to the
recipient’s current epoch or (ii) a checkpoint request that yields a bounded proof window sufficient
to advance to the current recipient identity. The two-stage authentication thereafter proceeds using
the updated recipient identity without reliance on external certificate authorities or persistent key

exchange.

[0024] The foregoing allows for stateless operation. The sender and recipient maintain no long-
lived session material; all keys are derived transiently from DAH/DDH values that themselves are
produced by the identity update rules. In embodiments where the local-state vector produces the
identity token via an extractor, stability-tuned projections and error-tolerant sketches ensure that
small fluctuations in local measurements do not cause spurious decryption failures, while genuine
role or context changes intentionally alter the recipient identity and force rekeying. In embodiments
where the hardware anchor and volatile salt produce identity, freshness is preserved by the per-epoch
salt, and in hybrid embodiments both inputs are hashed into the same identity value to improve

robustness across devices and environments.

[0025] An implementable embodiment aligned with the attached reference code performs, at the

sender, a key derivation from the recipient’s current identity using a domain-specific context string
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and applies authenticated encryption to the payload while embedding the sender’s current DAH
inside the ciphertext; at the receiver, a corresponding derivation from its current identity reproduces
the symmetric key to decrypt the payload, after which the embedded sender DAH is verified against
the stored sender slope. In all cases, header validation, recipient-bound key derivation, payload
decryption, embedded DAH comparison, and failure outcomes are process flows rather than

hardware links and are driven entirely by the memory-native identity substrate and local policy.
4. Trust Slope Validation and Resistance to Spoofing and Replay

[0026] FIG. 5 illustrates a process 500 for the validation of an incoming identity claim against a
previously trusted trust slope to resist spoofing, forgery, and replay. A stored trust slope 501
comprises successive dynamic identities DAH: 502, DAH: 503, and DAHs 504 derived under the
update rules disclosed herein. Upon receipt of a message or agent presentation bearing a claimed
identity DAH_x 510 in its transport header, the executing node evaluates whether the claim is an on-

slope successor relative to its last trusted state under policy-defined continuity bounds.

[0027] In one embodiment, the node performs a fast continuity comparison 520 by
reconstructing the expected successor neighborhood from the most recent trusted value (e.g., DAH;
503) and verifying that the presented DAH_x 510 is a valid successor. When the local-state
embodiment is used, continuity bounds are enforced using a stability-tuned acceptance radius over
extractor outputs computed from local state vectors; when the hardware-anchor embodiment is used,
bounds are enforced using per-epoch salt freshness and cadence constraints; when a hybrid
embodiment is used, both checks are applied. If the claim satisfies continuity, the node classifies it
as in-slope 530 and proceeds 560; otherwise, the claim is classified off-slope 540 and treated as a

probable spoof or forgery.

[0028] In embodiments employing stability-tuned local state vectors, the node may optionally
validate a short distance sketch accompanying the claim to confirm that the extractor output
corresponding to DAH_x 510 would lie within a policy-defined neighborhood, without revealing the
underlying local state. In hardware-anchor embodiments, the node verifies that the volatile salt used
to derive the presented successor is fresh relative to prior observations and expected cadence. Either
path preserves deterministic rejection of off-manifold or stale claims without reliance on external

registries or long-lived keys.
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[0029] Replay resistance is achieved by binding acceptance to monotonic progression along the
trust slope and by enforcing non-reuse of previously accepted successors within a policy horizon. If
the presented DAH_x 510 equals a previously accepted value for the same sender and context, or if
it regresses behind the node’s last trusted state, the node rejects the presentation as a replay or

regression. Policy may optionally require that accepted successors advance a local epoch counter or

satisfy a minimum inter-step interval to mitigate rapid replays.

[0030] Failure outcomes 545 are recorded with explicit reasons 550, which may include
continuity violation, neighborhood mismatch, salt staleness, cadence anomaly, or replay detection.
Based on local policy, the node may immediately reject the claim, degrade the sender’s trust score,
or place the sender into quarantine pending further evidence. When continuity is established, the
node accepts the claim, updates its stored reference, and appends a validation trace to its local

memory.

[0031] The foregoing validation operates identically across both unpredictability sources. In the
hardware-anchor embodiment, successors are verified using per-epoch salted derivations of the static
anchor; in the local-state embodiment, successors are verified using extractor tokens derived from
stability-tuned local state vectors; in the hybrid embodiment, both sources are incorporated into each
successor, and either’s anomaly is sufficient to fail continuity. Arrows in FIG. 5 indicate process
flows rather than hardware connections, and acceptance or rejection decisions (530, 540) are driven

entirely by locally available trust-slope lineage and policy without external authorities.
5. Agent Mutation and Substrate Entanglement Mechanisms

[0032] As used herein, an “agent” refers to a cryptographically signed, memory-bearing data
object that acts as a protocol operand within the disclosed substrate and includes a unique identifier,
a payload, a memory field, a transport header, and a cryptographic signature, and participates in
trust-slope formation and validation as described herein. A “semantic agent” is a specialized agent
that additionally comprises an intent field and cognition-compatible structure enabling policy-aware
mutation, delegation, and context-sensitive execution. FIG. 7 illustrates a process 700 for secure

agent mutation with substrate entanglement, in which each agent-side identity transition

[0033] A host node N: 701 maintains a current Dynamic Device Hash (DDHa,t) 702 computed
under the update rules of Section 2. In one embodiment, DDHi,t 702 is derived from a static

hardware anchor combined with a volatile salt; in another embodiment, it is derived from a local
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state vector processed by a strong extractor; in a hybrid embodiment, both contributions are included
in the same update. The host also maintains local context and entropy inputs ei,t 703 used to
parameterize mutation policy for the current epoch. An incoming semantic agent A with prior

Dynamic Agent Hash DAH {A,t—1} 704 is admitted to the execution context of N1 701.

[0034] When agent A initiates a mutation (e.g., role change, delegation, policy commit, or
semantic state transition), the host computes a mutation class indicator m_t 705 and derives a host
mutation token pi,t 710/711 bound to the then-current DDHi,t 702. In one embodiment, pu,t 711 is
computed as H(DDHu,t || m_t || epoch_t); in another embodiment, p,t 711 is a commitment that
additionally binds stability-tuned features of ei1,t 703. The agent’s successor identity DAH_{A,t} 720
is then computed as DAH_{A,t} = H(DAH_{A,t—1} Il pt | Ext(X_{A,t}) |l salt {A,t} |l tag),
where Ext(X_ {A,t}) is the agent-side extractor output derived from the agent’s memory field and
semantic context at time t, salt {A,t} is a volatile agent salt, and tag is a domain separator. In
embodiments where the agent does not maintain an agent-side extractor, the term Ext(X {A,t}) is
omitted and pi,t 711 remains the sole mutation driver together with DAH {A,t—1} 704 and

salt {A,t}.

[0035] The host records an entanglement trace entry Ei,t 730 that includes (i) DAH_{A,t—1}
731, (i1)) DDHa,t 732, (iii) pu,t 733, (iv) the resulting successor DAH_{A,t} 734, and (v) the mutation
class m_t 735, and signs the entry with the host’s private key. The agent appends Ei,t 736 into its
memory field and updates its cumulative commitment C_{A,t} 737 =H( C_{A,t—1} I Ei,t),
providing forward-secure tamper evidence. Arrows 770a—770c indicate process flows rather than

hardware connections.

[0036] Validation of the entangled mutation is local and deterministic. A downstream verifier
replays the agent’s mutation at step 740 by checking that DAH_{A,t} 734 is a valid successor of
DAH_{A,t—1} 731 under the disclosed pi,t 733 and salt {A,t}, verifies the host signature on Ei,t
736, and confirms that pu,t 733 is consistent with the referenced DDHi,t 721 and policy m_t 705.
Because DDHi,t 702 is itself produced under Section 2’s update rules (hardware-anchor plus salt;
local-state plus extractor; or hybrid), an attacker lacking the host’s device identity inputs cannot

synthesize pi,t 733 or forge Ei,t 736 to produce an acceptable DAH_{A,t} 741.

[0037] Agents that traverse multiple substrates accumulate a verifiable trail of entangled

mutations. As shown, when agent A later executes on node N2 750, the host’s current DDHz,t+1 751
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yields a new host mutation token p,t+1 752, and the agent advances to DAH_{A,t+1} 753 with a
corresponding entanglement trace Ez,t+1 754. A sequence of such entries forms a provenance path
760 tying each agent-side identity transition to the specific host device on which it occurred,
enabling distributed audit and forensic reconstruction without external registries or synchronized

ledgers.

[0038] The entanglement mechanism is agnostic to the unpredictability source used by the host.
In the hardware-anchor embodiment, p_ {*,t} 733/752 incorporates freshness via per-epoch salts
bound to a static anchor; in the local-state embodiment, p_{*,t} 733/752 includes extractor outputs
over stability-tuned local state; in a hybrid embodiment, both are concatenated within p_ {*,t}. In all
cases, the verifying node fails closed if (i) the host signature on E_{*,t} is invalid, (i1) p_ {*,t} does
not open to a host DDH consistent with policy, or (iii)) DAH_{A,t} is not a valid successor under the

disclosed materials.

[0039] Entanglement traces may be authenticated by either (a) a host digital signature or (b) a
message authentication code (MAC) keyed by a value derived from the contemporaneous DDH t
via a domain-separated key derivation function. In the MAC embodiment, keys are ephemeral and
locally scoped to the host epoch and are never registered or reused across epochs, thereby preserving

the “no persistent keypair” property while enabling verifiable entanglement.

[0040] In embodiments employing signatures, the host may mint an ephemeral signing keypair
per epoch and destroy the private key upon rotation; the entanglement trace includes an epoch
identifier that opens to the host’s DDH _t under policy so that acceptance does not depend on long-

lived signing keys.

[0041] By coupling agent mutation to host device identity, slope entanglement prevents off-
substrate evolution and detects out-of-band tampering. A purported successor lacking a coherent

E {*,t} 736/754, or referencing a host DDH that cannot be validated under local policy, is rejected
at step 740, and the presentation may trigger trust degradation or quarantine per deployment policy.
FIG. 7 thus demonstrates that each agent mutation step is verifiably anchored to a trusted device
identity (702, 751), with process flows 770d—770f indicating process steps rather than hardware
links.

6. Construction and Validation of Append-Only Mutation Lineage Logs
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[0042] FIGS. 8A and 8B illustrate a process 800 and components for implementing an append-
only mutation lineage that records the evolutionary history of a semantic agent’s identity as a
tamper-evident sequence of entries. In FIG. 8A, a first lineage entry 810 captures an initial successor
DAH: together with the host device identity DDHi, a semantic context Ctxi, and a timestamp Ti; the
entry is classified with an initialization class indicator 812 and signed by the executing host. A
subsequent entry 820 advances the agent identity to DAH: under a policy-driven mutation class 822,
while a further entry 830 advances to DAHs under a migration class 832; each entry is produced by
the successor rule that binds the prior agent identity, a host mutation token derived from the host
DDH at the time of execution, and a freshness input comprising either a hardware-anchor-derived
contribution, a local-state-vector extractor output, or both in a hybrid embodiment, as previously

described with respect to agent—substrate entanglement.

[0043] For each entry i, the agent computes the successor DAH_{i} as H(DAH_{i—1} ||

w_ {host,i} | Ext(X {A,i}) Il salt {A,i} Il tag) when the local-state embodiment is used, or as
H(DAH_{i—1} Il p_thost,i} | KDF(HWID, salt {A,i}) || tag) when the hardware-anchor
embodiment is used; in a hybrid configuration the extractor output and the hardware-anchor
contribution are concatenated prior to hashing. Each lineage entry includes the prior DAH, the
resulting DAH, the host DDH in effect at execution, the mutation class, and a timestamp, and the
executing host appends a host-signed entanglement trace that binds p_ {host,i} to the disclosed DDH

for the epoch. Arrows in FIG. 8A indicate process flows rather than hardware connections.

[0044] Integrity of the lineage is preserved by a cumulative chain hash 845 that is updated at
each entry; in one embodiment, the per-entry digest 846-848 is computed over the structured
contents of the entry and then folded into the cumulative hash as C_{i} = H(C_ {i—1} [I), producing a
forward-secure ledger in which any omission, reordering, or modification of entries is detected by
divergence of the terminal cumulative value. In a size-bounded embodiment, periodic anchors 849
are produced every J entries by hashing the then-current cumulative value with the prior anchor,

enabling compact proofs over long histories without retaining all intermediate entries.

[0045] Validation proceeds by bounded replay from a stored reference and the provided
window of entries, as shown for example in FIG. 8B. A verifier issues a lineage request 860 and
receives a proof window 865 comprising the referenced entries (e.g., 810, 820, 830), the
corresponding host signatures, and either a terminal cumulative hash 845 or a set of periodic anchors

849 sufficient to open the window against a previously trusted anchor. The verifier 870 checks that
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each host signature is valid for the disclosed host identity, recomputes each successor DAH using the
disclosed materials, confirms that the entanglement token for each step is consistent with the
referenced host DDH and mutation class, and folds each per-entry digest (e.g., 846-848) to reach the
terminal cumulative hash 845; acceptance 880 follows when the recomputed cumulative 875 value

opens to the trusted anchor and all per-step checks succeed.

[0046] Replay resistance and non-transferability are enforced during validation by rejecting any
entry whose successor DAH is a regression relative to the verifier’s stored reference or whose
freshness input is stale or inconsistent with policy cadence; entries that reproduce previously
accepted successors for the same sender and context within a replay horizon are rejected as replays.
Tamper attempts, including omission or reordering, are detected when the recomputed cumulative
chain fails to match the provided 845 or cannot be opened against the periodic anchors 849,

producing a tamper finding 890 recorded in local memory under policy.

[0047] The lineage is agnostic to unpredictability source and supports domain-specific
governance. When the hardware-anchor embodiment is used exclusively, the freshness input within
each entry derives from a volatile salt keyed to a static hardware identifier; when the local-state
embodiment is used exclusively, it derives from an extractor over a stability-tuned local state vector;
when hybridized, both inputs are included to strengthen continuity across heterogeneous devices.
Entries may include policy-relevant metadata such as mutation classes 812, 822, 832 and execution
zone identifiers, enabling different trust domains to enforce local acceptance while preserving

cryptographic interoperability through the cumulative chain 845 and anchors 849.

[0048] By recording, signing, and chaining each identity transition, the append-only mutation
lineage of FIGS. 8A and 8B provides verifiable provenance for semantic agents operating across
decentralized substrates, enables incremental validation from recent anchors or comprehensive
reconstruction from a prior trusted point, and detects spoofing, forgery, and replay attempts using
only locally available materials and bounded proofs, without reliance on external authorities,

persistent key registries, or synchronized ledgers.
7. Cumulative Slope Validation Across Distributed Substrates

[0049] FIG. 12 illustrates a process 1200 for cumulative validation of an agent’s identity slope
as the agent migrates across multiple substrate nodes, with each mutation step entangled to the

executing host’s device identity. A semantic agent A enters a first host node N1 and advances from a
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prior agent identity to a successor recorded as an entangled step E: 1220, bound to the host’s current
Dynamic Device Hash DDH: 1210. The agent subsequently executes on nodes Nz and N, producing
further entangled steps E2 1222 bound to DDH2 1212 and Es 1224 bound to DDHs 1214,
respectively. The sequence of entangled steps Ei—Es forms a tamper-evident multi-node path 1230
capturing both identity evolution and execution provenance across substrates; arrows 1240a—1240c

indicate process flows rather than hardware connections.

[0050] In one embodiment, each entangled step E; 1220/1222/1224 is constructed according to
the mutation mechanism described with respect to FIG. 7, wherein a host mutation token ; is
derived from the executing host’s current DDH; (e.g., 1210, 1212, 1214) and a mutation class, and
the agent’s successor identity is computed as HIDAH_{i—1} || wi Il freshness 1 || tag). The freshness
input may be produced from a static hardware anchor combined with a volatile salt, from a local
state vector processed by a strong extractor, or from a hybrid of both sources within the same step;

all three embodiments are enabled and interoperable within the same cumulative path 1230.

[0051] Each entangled step is recorded into the agent’s append-only lineage as a signed entry
that includes the prior DAH, the resulting DAH, the executing host’s DDH; (e.g., 1210, 1212, 1214)
in effect at execution, the mutation class, and a timestamp. Per-entry digests are folded into a
cumulative chain value and, in size-bounded embodiments, periodic anchors 1250-1252 are emitted
at selected intervals to permit compact proofs across long multi-node traversals. Cross-domain
context—such as zone or policy scope—is optionally recorded as a scope tag 1235 to support

federation without centralized oversight.

[0052] A verifier reconstructs the cumulative slope by requesting a windowed proof 1240 that
spans one or more entangled steps (e.g., E1 1220 through Es 1224) and that opens against either a
previously trusted anchor or a provided periodic anchor 1250-1252. During replay, the verifier
confirms for each step that: the disclosed host signature is valid for the executing host; the host
mutation token p; opens to the recorded DDH; (e.g., 1210, 1212, 1214) under local policy; the
successor DAH recomputed from the disclosed materials matches the recorded successor; and the
cumulative chain value at the end of the window opens to the trusted anchor. Successful
reconstruction yields acceptance 1260; any inconsistency produces a tamper finding 1270 recorded

to local memory.
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[0053] The cumulative validation is agnostic to the unpredictability source used at each host. In
the hardware-anchor embodiment, per-step freshness is enforced by non-repeating salts bound to a
static device identifier; in the local-state embodiment, freshness derives from extractor outputs over
stability-tuned local state vectors; in the hybrid embodiment, both contributions are concatenated,
and failure of either contribution is sufficient to reject the step. Because validation proceeds by local
replay from prior trusted points using bounded proofs and anchors 1250-1252, the mechanism
tolerates disconnected or asynchronous operation and does not depend on external registries or

synchronized ledgers.

[0054] Where agents traverse administrative or trust boundaries, the scope tag 1235 enables
policy-aware acceptance without global coordination: a verifier may require that steps carrying
particular scope tags be corroborated by specific host roles or quorum attestations before the window
1240 is accepted. By binding every agent-side mutation to a specific host DDH (1210, 1212, 1214)
and chaining those steps into the cumulative path 1230 with periodic anchors 1250-1252, FIG. 12
demonstrates end-to-end, multi-node provenance that is verifiable, replay-resistant, and tamper-

evident using only locally available materials and bounded disclosures.
8. Recovery From Memory Loss: Quorum-Based Reauthorization

[0055] FIG. 9 illustrates a process 900 for recovery of an agent’s trust slope after memory loss,
entropy corruption, or discontinuity, using attestations from previously trusted peers rather than
persistent credentials. An agent that detects the absence or invalidity of its stored lineage initializes a
reseeded identity DAHo* 910 and emits an attestation request 920 to peers known from prior
interactions; the request is transmitted as a signed semantic agent carrying the new identity state, role
and scope metadata, and any surviving anchors or checkpoint references. The lost-slope condition

900 marks the start of the recovery process; arrows 940a—940c indicate process flows rather than

hardware links.

[0056] Each peer node evaluates the request 920 against locally retained evidence of prior
continuity, including stored checkpoints and anchors, observed mutation classes, and execution
context recorded in lineage logs. In embodiments employing stability-tuned local state vectors, a
short distance sketch of the requester’s prior extractor outputs may be included to support bounded
similarity checks without revealing raw local state; in hardware-anchor embodiments, freshness and

cadence relative to prior salts are verified. A peer that finds the request consistent within policy
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tolerances issues a signed attestation 930 in the form of a semantic agent that references the
requester’s DAHo* 910, cites the most recent trusted anchor or checkpoint for the requester, and

records the peer’s own device identity and time of evaluation.

[0057] Attestations 930 are accumulated and aggregated 940 under a quorum policy. In one
embodiment, the aggregation step forms a recovery token 950 computed as a commitment over the
requester’s DAHo* 910, the set of validating attestations, and a policy identifier specifying quorum
thresholds and weighting. The quorum policy may be defined by an adaptive consensus protocol,
with eligibility, vote weights, and minimum counts determined by a referenced policy agent; the
same process supports both count-based thresholds and trust-weighted thresholds that incorporate

peer reputation or role scope.

[0058] Upon meeting the quorum requirements, the recovery token 950 is accepted as a
successor anchor for the requester’s identity and is appended into the requester’s lineage. Reinsertion
960 attaches the requester to the distributed trust graph with a forward link from DAHo* 910 to the
accepted recovery anchor embodied by the token 950, enabling downstream verifiers to bridge the
pre-loss and post-loss segments under local policy. Where insufficient attestations are received or
where conflicts are detected, the requester remains quarantined or is directed to retry after additional

observations.

[0059] The recovery mechanism is agnostic to the unpredictability source used to form the
requester’s new identity. In the hardware-anchor embodiment, DAHo* 910 is derived from a static
anchor and a volatile salt; in the local-state embodiment, DAHo* 910 is derived from an extractor
over a stability-tuned local state vector and a volatile salt; in a hybrid embodiment, both
contributions are included. Peer evaluation remains local and deterministic in all cases, relying on
previously retained checkpoints, anchors, and lineage evidence rather than external registries or

static key material.

[0060] Verification of the recovery token 950 by third parties proceeds by opening the
aggregated attestations 930 against the signers’ identities and recomputing the commitment
embodied by 950. Acceptance requires that the attesters be eligible under the referenced policy, that
their signatures be valid, and that the attested linkage from the requester’s pre-loss anchors to

DAHo* 910 satisfy the quorum thresholds. Failure to satisfy any condition results in rejection and
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optional trust-score adjustment for the requester or for misbehaving attesters, as dictated by local

policy.

[0061] By replacing persistent secrets with quorum-backed attestations grounded in local
memory and prior observation, FIG. 9 provides a reauthentication path that preserves
decentralization, tolerates disconnection, and resists spoofing and replay. The recovery token 950
serves as a durable pivot point for subsequent validation, and the reinsertion step 960 restores

continuity of the requester’s trust slope without reliance on centralized authorities or static keypairs.
9. Entropy Anchor Rotation and Adaptive Slope Reinitialization

[0062] FIG. 10 illustrates a process 1000 for rotation of an entropy anchor and adaptive
reinitialization of a trust slope to preserve freshness, forward secrecy, and policy alignment over
time. A slope health monitor 1005 evaluates one or more indicators of staleness, including elapsed-
epoch thresholds, drift or cadence anomalies in observed successors, entropy reuse heuristics, trust
degradation events, or compromise signals emitted by the substrate. Upon detecting a condition that

satisfies local policy, a staleness determination 1010 triggers reseeding.

[0063] In response, a reseed command 1020 initiates generation of a new entropy anchor E:
1030 and a corresponding initial identity DAHo" or DDHo' 1035. In a hardware-anchored
embodiment, E: 1030 is derived from a keyed function of a static device identifier and a fresh
volatile salt; in a local-state embodiment, E: 1030 is derived from a stability-tuned local state vector
transformed by a strong extractor; in a hybrid embodiment, both contributions are included within
the same derivation. The new initial identity 1035 is computed under the same update rule used

throughout this disclosure with a versioned domain separator to distinguish anchor epochs.

[0064] After anchor rotation, execution proceeds along a new trust slope indicated by process
arcs 1040a—1040c. To preserve verifiability across the transition, a forward link 1050 is recorded
that binds the terminal value of the prior anchor epoch to the new initial identity 1035. The forward
link 1050 enables downstream verifiers to reconcile pre-rotation and post-rotation segments under

policy without requiring global coordination or persistent registries.

[0065] Rotation policy may sandbox or expire the prior slope. In one embodiment, the node
designates the pre-rotation lineage as read-only and unavailable for future successor acceptance,

marks it for archival 1075, and enforces replay prevention 1085 by rejecting presentations that reuse
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identifiers from the expired epoch. In another embodiment, a grace window permits parallel
acceptance of both epochs solely for bridging proofs that open through the recorded forward link
1050.

[0066] Certain embodiments support biometric-assisted reseeding as an optional source of fresh
local unpredictability. A biometric capture 1060 (e.g., fingerprint, voiceprint, retinal, gait, or
behavioral feature) is pre-processed at step 1062 and transformed by a privacy-preserving fuzzy
extractor 1066 to yield a bounded seed 1064; optional liveness verification 1068 may be applied.
The seed 1064 is never stored or exported in raw form and is used only locally to derive or augment
the new anchor E: 1030. The biometric-assisted path composes with both the hardware-anchored and
local-state embodiments by contributing additional non-exported unpredictability to the reseed

command 1020.

[0067] Validation under rotation is local and deterministic. A verifier that encounters a rotated
identity requests or receives bounded proofs that include the forward link 1050 and the new initial
identity 1035; the verifier then replays successors along arcs 1040a—1040c and confirms that the new
epoch opens to the prior epoch through 1050 in accordance with policy. Because E: 1030 and 1035
are produced by the same permitted sources—hardware anchor with volatile salt, local state vector

with extractor, or hybrid—the verification logic is uniform across epochs.

[0068] In privacy-sensitive deployments, the DAH presented in transport headers may rotate at
a policy-defined cadence independent of payload semantics to reduce linkability. Verifiers reconcile
rotations by opening forward links or anchors recorded for each header epoch, preserving

auditability while limiting long-range correlation.

[0069] As depicted in FIG. 10, entropy anchor rotation thus maintains high-entropy, memory-
resolved identity across a device or agent’s operational lifetime. The slope health monitor 1005
detects staleness 1010, reseeding 1020 establishes a new anchor 1030 and initial identity 1035,
execution continues along a fresh slope 1040a—1040c, and the forward link 1050 preserves auditable
continuity while enabling expiration 1075 and replay protection 1085 for the prior epoch. All arrows

indicate process flows rather than hardware connections.

10. Delayed Validation for High-Latency and Intermittent Systems
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[0070] FIG. 11 illustrates a process 1100 for delayed validation in environments where
immediate continuity checking is impracticable due to latency, intermittent connectivity, or
disconnection. A sender 1101 prepares a message bearing the sender’s current dynamic identity and
a transmission timestamp To 1110, together with a bounded set of mutation proofs 1120 that
compactly represent the intervening trust-slope evolution since a previously trusted anchor. The
proofs 1120 enable downstream reconstruction without requiring continuous synchronization or

external registries.

[0071] In one embodiment, the set of mutation proofs 1120 includes, for each missing step i in
the transmission window, per-step materials sufficient to deterministically recompute the successor:
an extractor token y; 1122 derived from a stability-tuned local state vector with a per-step volatile
salt, when the local-state embodiment is used; a keyed derivation ; 1124 computed from a static
hardware anchor and a per-step volatile salt;, when the hardware-anchor embodiment is used; or both
1122 and 1124, when a hybrid embodiment is used. The sender may also include an optional

reference to the last periodic anchor Ax 1126 or a checkpoint identifier to assist bounded replay.

[0072] Upon receipt, a verifier that lacks a recent anchor 1130 replays the intervening steps by
iteratively applying the update rule with the disclosed per-step materials along process arcs 1140a—
1140c, starting from its last trusted value and proceeding forward to the presented identity associated
with To 1110. For each step, the verifier recomputes the successor from the immediately prior value
and the disclosed token(s) and salt, and, when local-state tokens are used, may evaluate a
neighborhood constraint under local policy to bound drift. When the chain opens to Ax 1126 or to the
stored reference and the recomputed terminal value equals the presented value, validation succeeds

and the presentation is accepted 1150.

[0073] If the verifier’s stored state predates Ax 1126 or if the supplied proof set 1120 is
insufficient to complete the replay, the verifier issues a checkpoint request 1160 and receives a
bounded checkpoint response 1165 comprising either a newer anchor reference or an additional short
proof window. Because each successor depends only on the immediately prior dynamic identity and
the disclosed per-step materials, delayed verification remains local and stateless once the checkpoint

1s obtained.

[0074] If replay fails—because a per-step token is inconsistent, a salt is stale relative to

expected cadence, a neighborhood constraint is violated, or the recomputed terminal value does not
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match the presented value—the verifier rejects the presentation 1155 under policy. Optional actions
include trust-score adjustment or quarantine pending subsequent corroboration from anchors or

peers.

[0075] The delayed validation mechanism is agnostic to unpredictability source. In the
hardware-anchor embodiment, the proofs 1120 convey keyed derivations 1124 that bind freshness to
per-epoch salts; in the local-state embodiment, the proofs 1120 convey extractor tokens 1122 derived
from stability-tuned local state vectors; in the hybrid embodiment, both are conveyed and
concatenated in the update rule, and failure of either contribution is sufficient to reject the step. In all
cases, acceptance 1150 requires strict monotonic progression within the proof window and prevents

replay by disallowing reuse of previously accepted successors for the same sender and context.

[0076] When header-level continuity validation succeeds yet payload decryption fails due to
recipient identity drift, the recipient advertises its current anchor or checkpoint and the sender retries
once using that anchor; failing that, the sender requests a bounded checkpoint response. Retries are
limited by policy to a fixed attempt window to avoid oracle leakage while ensuring bootstrapping

from sparse state.

[0077] By allowing receivers to authenticate from sparse local state using bounded proof
windows and optional checkpoints, the process outlined in FIG. 11 enables secure operation in
stateless, intermittently connected, or long-duration disconnected deployments while preserving the
memory-resolved authentication model and avoiding reliance on persistent credentials, centralized

authorities, or synchronized ledgers.
11. Sparse Trust Slope Recovery Using Embedded Checkpoints

[0078] FIG. 2 illustrates a process 200 for sparse recovery of a trust slope in memory-
constrained deployments using embedded checkpoints and bounded proofs. A device or agent 201
retains selected identities such as DAH: 210 and DAHa4 215 together with a checkpoint Cz 220 that
summarizes all validated mutations up to the checkpoint epoch. When continuity must be re-
established from limited local state, a slope proof 230 provides only the per-step materials for the
missing interval, allowing deterministic forward replay from C: 220 via a summarized replay group

240, with the per-step procedure unrolled in FIG. 2A.
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[0079] FIG. 2A depicts the unrolled procedure corresponding to the replay group 240 of FIG. 2.
The verifier loads checkpoint C2 220 (step 242), selects a bounded proof window (step 244), and for
each missing step i (step 245) obtains extractor token y; 232 and/or keyed derivation K; 233 with salt;
(step 246). The verifier recomputes the successor DAH; (step 248) and opens the per-entry
commitment 236;; when a periodic anchor 238 is present the replay is opened to the anchor (step
249). The replay index is advanced (step 252) and continuation is evaluated under the bounded
window (step 254), where it is determined whether to continue window. If yes, return to step 246; if
no, the window is done and so, upon this completion, a verified terminal for the window is emitted

(step 256) and local state is updated for subsequent acceptance or checkpointing (step 258).

[0080] In one embodiment, the proof 230 includes, for each step i after C. 220, an extractor
token bundle 232 comprising y; = Ext(Xj) with a per-step volatile salt, when the local-state
embodiment is used; in another embodiment, the proof includes a keyed-derivation bundle 233
comprising KDF(HWID, salt;) when the hardware-anchor embodiment is used; in a hybrid
embodiment, both 232 and 233 are present and concatenated. The verifier recomputes successors as

DAH;+ = H(DAH; || token; || salt; || tag) until the presented value (e.g., DAH4 215) is reached.

[0081] Each step in the missing interval is also committed for tamper evidence. A per-entry
commitment 236; = H(DAH,; || token; || meta;) is folded into periodic anchors 238 at window size J.
The proof 230 supplies the siblings necessary to open 236; against Cz 220 and the relevant anchor
238, yielding validation success 250 when the recomputed chain matches the presentation. The
verifier appends a verification trace to local memory 260 and may roll a new checkpoint Cs4 for

future sparse recovery.

[0082] If the stored checkpoint is stale or unavailable, the verifier issues a checkpoint request
270 and receives a bounded checkpoint response 275 containing either an updated checkpoint Cy or a
short bridging proof window to the nearest trusted anchor. Because each successor depends only on
the immediately prior DAH and the disclosed per-step materials (232, 233), reconstruction proceeds

locally and does not require external registries, static credentials, or synchronized ledgers.

[0083] The checkpoint mechanism is agnostic to unpredictability source. In the hardware-
anchor embodiment, freshness is enforced through per-epoch salts bound to a static device identifier
and verified via 233; in the local-state embodiment, freshness derives from stability-tuned extractor

tokens 232, optionally accompanied by a compact distance sketch evaluated at replay; in the hybrid
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embodiment, both contributions must verify for acceptance. Policy controls the checkpoint cadence,
trading storage overhead against replay effort: more frequent C_* checkpoints reduce reconstruction

cost, while sparser checkpoints minimize storage at the expense of longer bounded proofs.

[0084] By retaining sparse identities (210, 215), embedding checkpoints (220), verifying
bounded proofs (230 with 232/233), opening commitments and anchors (236, 238), and supporting
cursor movement via requests and responses (270, 275), the process outlined in FIG. 2 allows for
verifiable recovery of identity continuity in memory-constrained or intermittently connected

environments using only locally available materials and policy-bounded disclosures.
12. Predictive Mutation Verification and Behavioral Drift Detection

[0085] FIG. 6 illustrates a process 600 for predictive validation of agent and device identity by
forecasting expected successor states and bounding acceptable deviation to detect drift or
compromise prior to full slope discontinuity. A forecasting engine 605 operates over a history buffer
610 comprising prior validated dynamic identities, mutation classes, and inter-step cadence statistics.
From this buffer, a cadence estimator 612 and a role-transition model 614 produce forecast

parameters for near-future epochs.

[0086] In one embodiment, the cadence estimator 612 maintains an exponentially weighted
moving average of inter-step intervals and a variance term to predict the expected timing window for
the next successor. The role-transition model 614 encodes a finite-state transition matrix
implementing a first-order Markov chain, in which each row specifies the conditional probabilities
of transitioning from a current mutation class, semantic role, or scope tag to a successor class; the
matrix is row-stochastic with nonnegative entries that sum to one. These predictions yield a most-
likely mutation class \hat{m} {t+1} and a small set of alternates. The predicted attributes drive an
expected-token generator 620 that forms a neighborhood envelope 622 for the next step on the trust

slope.

[0087] The expected-token generator 620 is compatible with both identity sources. In a local-
state embodiment, it projects recent local-state feature vectors into a stability-tuned space and
computes a predicted extractor token \hat{y} {t+1} together with an acceptance envelope 622
defined as a Hamming ball of radius r around \hat{y} {t+1} (i.e., all tokens whose Hamming distance
from \hat{y} {t+1} is <r), with r calibrated to observed intra-role variation. In a hardware-anchor

embodiment, it predicts salt freshness and cadence bounds for the next per-epoch derivation,
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yielding an acceptance window over salt reuse and timing. In a hybrid embodiment, both the
\hat{y} {t+1} Hamming-ball envelope and the salt-cadence window are produced, and both must be

satisfied during verification.

[0088] The forecasting engine 605 emits an expected-identity set 630 that may include one or
more predicted successors \widehat{\mathrm{DAH}} {t+1}, \widehat{\mathrm {DAH}} {t+2} (or
\widehat{\mathrm{DDH}} {\cdot} for devices) together with their acceptance envelopes 622 and
expected inter-step timing. Upon receipt of a presentation bearing a claimed identity 640 (e.g.,
header DAH or embedded sender DAH as previously described), a comparator 650 evaluates
whether the claim lies within the predicted envelope and within the cadence window. If so, the claim

is classified as predicted-trajectory consistent and accepted 655 subject to normal continuity checks.

[0089] Deviations are evaluated as behavioral drift. A drift detector 660 classifies out-of-
envelope claims by type, including cadence anomalies (early/late relative to the estimator 612),
semantic divergence (unexpected mutation class relative to 614), and token-space deviation
(exceeding the acceptance envelope 622 in the local-state embodiment). Policy actions may include
trust-score adjustment 665, requirement for supplemental proof (e.g., a short bounded window from

the sender), or quarantine 668 pending corroboration from peers or anchors.

[0090] Predictive verification composes with delayed or sparse validation. When a verifier lacks
an up-to-date anchor, it may still use the expected-identity set 630 to triage incoming traffic: claims
far outside envelopes are rejected or quarantined immediately, while near-boundary claims are held
until a checkpoint or short proof window arrives. Once checkpoint material is available, standard
replay from the last trusted state confirms or refutes the prediction without reliance on external

registries or static credentials.

[0091] The predictive mechanism is agnostic to unpredictability source. In the hardware-anchor
embodiment, the comparator 650 enforces salt freshness and cadence windows predicted by 612; in
the local-state embodiment, it enforces neighborhood envelopes computed from stability-tuned
projections; in the hybrid embodiment, both must hold. Forecast parameters are continuously
updated from the history buffer 610 as new validated steps arrive, allowing the envelopes 622 to
tighten or relax adaptively with observed behavior while preserving sensitivity to genuine role

changes indicated by the transition model 614.
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[0092] This combination of the forecasting engine 605, cadence estimator 612, role-transition
model 614, expected-token generator 620 with acceptance envelopes 622, comparator 650, drift
detector 660, and policy outcomes 655/665/668 provides early, local detection of compromise or
unauthorized mutation while maintaining interoperability with the trust-slope continuity checks

disclosed herein. Arrows in FIG. 6 indicate process flows rather than hardware connections.
13. Compatibility with Legacy Systems Using Fallback Identifiers

[0093] FIG. 3 illustrates a process 300 that allows for interoperability with legacy systems that
rely on persistent public—private keypairs and PKI-style signatures, while preserving isolation from
the memory-resolved trust slope. A fallback identifier is constructed for the sole purpose of a legacy
session and is cryptographically segregated from Dynamic Agent Hash (DAH) and Dynamic Device
Hash (DDH) evolution.

[0094] In one embodiment, a legacy-bridge adapter 310 generates a transient keypair 320 and a
session nonce 322 scoped by a domain-separating context tag. The adapter derives a fallback
identifier FID 330 as FID = H(PK_pub || nonce || ctx_tag), where PK_pub is the public key of 320.
The FID 330 is maintained inside an isolation boundary 340 that prevents any use of PK_pub, the
nonce 322, or the FID 330 in DAH/DDH update rules. A local, volatile mapping table 352 records

{FID 330 < session metadata} for the duration of the session only.

[0095] For outbound interoperability, the adapter 310 composes a legacy message that carries
FID 330 and a PKI signature 350 over the required legacy fields using the private key of 320.
Transport and acceptance by the legacy counterparty proceed under its PKI policy 305, while the
sender’s DAH/DDH slope remains unchanged and continues to govern local routing, caching, or
semantic authorization. No fallback material is hashed into DAH/DDH, and no DAH/DDH material

is exported to the legacy side.

[0096] For inbound interoperability, the adapter 310 validates the counterparty’s PKI signature
350 and resolves it to a local FID 330 via the mapping table 352. If local policy requires correlating
the legacy session to a current DAH _t for auditing, the adapter may mint a one-way binding token
355 that attests “FID 330 was serviced while DAH_t was active,” without allowing any legacy-
sourced material to influence successor computation on the trust slope. The binding token 355 is

stored in a segregated audit log 380 and expires with the session.
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[0097] Fallback lifecycle is strictly bounded. At session termination or policy-defined expiry,
the adapter purges the mapping table entry 352, destroys the transient private key of 320, and marks
FID 330 invalid via teardown 360. Optional revocation metadata 362 can be emitted to prevent reuse
by intermediaries. Because no DAH/DDH update ever incorporates PKI artifacts, teardown 360

cannot perturb the trust slope.

[0098] The isolation boundary 340 enforces non-contamination in both directions. Cross-
contamination detection 370 fails closed if any attempt is made to (i) inject PKI-derived values into
DAH/DDH successors, (ii) export DAH/DDH internals to satisfy legacy authentication, or (iii)
extend a legacy identifier beyond its declared context. Policy may additionally constrain fallback use

to whitelisted legacy domains or require human-in-the-loop approval for high-sensitivity scopes.

[0099] The mechanism is agnostic to unpredictability source. Whether DAH/DDH is formed
from a hardware anchor with volatile salt, a local state vector with extractor, or a hybrid of both, the
legacy bridge 310 operates purely at the adapter boundary and does not alter slope formation,

continuity checks, lineage chaining, delayed verification, or checkpoint replay.

[0100] By confining FID 330 and PKI signature 350 to a segregated adapter path with explicit
teardown 360, and by recording only one-way attestations 355 in an audit log 380, FIG. 3
demonstrates compatibility with legacy ecosystems without diluting memory-native authentication
or enabling persistent surveillance of identity evolution. Arrows in FIG. 3 indicate process flows

rather than hardware connections.
14. Cryptographic Threat Model and DSM Defense Surface

[0101] The Dynamic Signature Mesh (DSM) defines an adversarial model and corresponding
defense surface for memory-resolved authentication in decentralized substrates. Unlike public-key
infrastructures that depend on persistent private keys and hierarchical anchors, DSM validates
identity as deterministic progression along a trust slope whose successors are derived from locally
retained unpredictability and semantic context. The model applies to embodiments that derive
dynamic identities from a hardware anchor with per-epoch volatile salt, from a stability-tuned local

state vector processed by a strong extractor, or from a hybrid that concatenates both sources.

[0102] Resistance to static-key compromise follows directly from the absence of long-lived

secrets in the authentication path. A Dynamic Agent Hash (DAH) or Dynamic Device Hash (DDH)
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is ephemeral, computed per step, and never reused as a standing credential. Observation or
disclosure of any single DAH/DDH does not enable impersonation because acceptance requires
monotonic progression from a prior trusted state under the published update rule and policy-bounded

continuity checks.

[0103] Spoofing and impersonation are mitigated by on-slope continuity verification and
substrate entanglement. A claimant must present a successor that is a valid descendant of the
verifier’s last trusted state and, for agent mutations, must open the host entanglement trace that binds
the step to a specific device identity at execution time. In the hardware-anchor embodiment, per-
epoch salts and cadence bounds prevent reuse; in the local-state embodiment, neighborhood
envelopes over extractor outputs enforce role-consistent drift; in the hybrid embodiment, failure of

either contribution is sufficient to reject the claim.

[0104] Replay is prevented by enforcing non-repetition within a policy horizon and by requiring
forward movement along the slope. Presentations equal to previously accepted successors,
regressions behind the verifier’s stored reference, or claims outside the expected inter-step timing
window are rejected and may trigger automatic trust degradation or quarantine as specified by local

policy.

[0105] Message-layer integrity composes with identity verification through two-stage
authentication. A transport header DAH is screened for continuity prior to decryption; the payload is
then decrypted under a key derived from the recipient’s current identity and must contain an
embedded copy of the sender’s DAH that is itself validated against the sender’s slope. Failure at
either stage yields deterministic rejection and optional policy actions without reliance on external

registries.

[0106] Tamper detection over historical evolution is provided by forward-secure commitments
and periodic anchors on lineage logs. Each entry folds into a cumulative chain; omission, reordering,
or modification of any entry diverges the terminal value and fails opening against the last anchor.
Sparse and delayed verification remain secure because bounded proof windows disclose only per-
step materials sufficient for local recomputation and commitment opening, never raw local state

vectors or static device secrets.

[0107] Quantum threats are addressed by avoiding hardness assumptions vulnerable to Shor’s

algorithm. Security reduces to the unpredictability of per-step inputs and the preimage resistance of
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the employed hashes and extractors. Let A denote the min-entropy (in bits) of the per-step
unpredictability contribution after extraction; an offline next-step forgery then has success
probability approximately 2" {—A} (i.e., two raised to the negative A). In the presence of quantum
amplitude-amplification search (e.g., Grover’s algorithm), generic attacks achieve only a quadratic
speedup, yielding success probability approximately 2 {—A/2}. Parameter selection (e.g., 256-512-

bit extractor outputs and 256—512-bit hash digests) provides conservative margins.

[0108] Side-channel and co-residency risks are bounded by locality and diversification. In the
hardware-anchor embodiment, salts are single-use and bound to epochs, preventing cross-context
replay even if a salt is observed. In the local-state embodiment, only short, error-tolerant sketches
may be disclosed for neighborhood checks; sketches are non-invertible and insufficient to
reconstruct raw state. Optional biometric reseeding augments, but never replaces, these sources and

is confined to privacy-preserving fuzzy extractors with liveness verification.

[0109] Host compromise and off-substrate mutation are contained by entanglement and
signatures on mutation traces. A verifier requires that each agent-side mutation include a host-signed
trace whose mutation token opens to the asserted host DDH under policy; steps lacking a coherent
entanglement proof fail closed. Entropy-anchor rotation with forward links permits proactive refresh

without abandoning auditability and prevents stale-epoch replay across anchor boundaries.

[0110] Cross-protocol and downgrade attacks are mitigated by strict isolation of legacy
interoperability. Fallback identifiers and PKI signatures are confined to a segregated adapter whose
materials are never hashed into DAH/DDH updates; any attempted mixing of PKI artifacts with
slope formation triggers fail-closed detection. Session-scoped mappings and explicit teardown

prevent persistence or surveillance across epochs.

[0111] Flooding and admission-control threats are addressed by early discard on header
continuity failure, by mandatory replay protection, and by policy-driven rate limits keyed to sender
slope state. Nodes may degrade trust on repeated near-misses, require supplemental bounded proofs,

or quarantine sources exhibiting cadence or neighborhood anomalies.

[0112] To constrain cross-correlation and token malleability, extractor tokens and any optional
sketches are domain-separated by a fixed public seed and context tag per deployment and are never

reused across domains. Validation applies policy-defined acceptance envelopes that bound token-

28 Attorney Docket No. 20596-005USU1



space neighborhoods; presentations outside the envelope are classified as off-manifold drift and fail

closed without disclosing raw local state vectors.

[0113] Receivers implement a two-epoch acceptance window (current epoch and immediately
prior) and per-sender rate limits keyed to header continuity to mitigate denial-of-service conditions
when senders encrypt under stale recipient identities. Failure responses are opaque and do not leak
rekey status; repeated failures degrade trust under policy and may require a checkpoint-based retry

before further processing.

[0114] Linkability is further constrained by header-level DAH rotation on a fixed cadence with
forward links, preventing persistent correlation of activity while maintaining verifiable continuity

under bounded proofs.

[0115] Collectively, these mechanisms establish a defense surface that resists static-key
compromise, spoofing, replay, mutation tampering, predictive entropy attacks, quantum acceleration,
host compromise, and cross-protocol contamination while remaining compatible with stateless,
intermittent, and federated operation. The protections operate uniformly across hardware-anchor,
local-state, and hybrid embodiments and require only locally available materials, checkpoints, and

bounded disclosures.
15. Deployment Environments and Cognition-Native Adaptability

[0116] The disclosed mechanisms are deployable across heterogeneous substrates, including
stateless execution fabrics, intermittently connected networks, memory-constrained devices,
decentralized multi-domain systems, and cognition-native agent platforms. In all such environments,
identity is validated as progression along a trust slope formed from locally retained unpredictability
and semantic context, without reliance on centralized authorities, long-lived credentials, or

synchronized ledgers.

[0117] In stateless deployments—such as ephemeral edge workers, serverless functions, relay
nodes, and mobile agents operating without durable storage—the system derives Dynamic Agent
Hashes (DAHs) and Dynamic Device Hashes (DDHs) directly from locally available inputs under
the update rules disclosed herein. A minimal conformance profile executes header continuity
screening prior to decryption, derives a symmetric key from the recipient’s current identity, and

appends bounded validation traces; optional checkpointing provides later reconstruction when
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persistent storage is unavailable. Because no private key material or session state must be preserved

across invocations, stateless operation remains fully interoperable with memory-aware peers.

[0118] In high-latency, disrupted, or disconnected networks—such as delay-tolerant, mesh,
opportunistic, or spaceborne links—the system authenticates using delayed verification and bounded
proof windows. Senders embed per-step materials sufficient for local replay from the verifier’s last
anchor; receivers reconstruct continuity upon reconnect without global synchronization. Sparse
proofs and periodic anchors permit long-haul transit while preserving auditability and replay

resistance.

[0119] In memory-constrained devices—including IoT sensors, wearables, embedded
controllers, and ultra-low-power endpoints—the system employs sparse checkpointing and forward-
secure chaining to bound storage overhead. Devices retain only selected identities and anchors,
reconstructing intervening steps on demand from compact proofs. Policy controls checkpoint

cadence to trade storage for replay effort, and acceptance remains strictly local and deterministic.

[0120] In decentralized and cross-domain environments—such as federated learning, distributed
Al ecosystems, or multi-tenant data exchanges—the system supplies a substrate-independent trust
layer. Nodes validate each other via memory-resolved behavior rather than external registries,
enabling organic formation of trust graphs across administrative boundaries. Agent-side mutations
are entangled to the executing host’s device identity, yielding verifiable provenance during

migration and preventing off-substrate evolution.

[0121] In cognition-native platforms where agents are semantic, memory-bearing operands
with intent fields and policy references, trust-slope continuity ties identity to behavioral integrity
rather than static credentials. Agents can mutate, delegate, reclassify, or reindex under embedded
policy while preserving verifiable lineage through entanglement traces, append-only mutation logs,
and cumulative anchors. Predictive verification further anticipates near-term successors to surface

drift prior to full discontinuity, improving containment and triage.

[0122] The mechanisms are agnostic to unpredictability source. In one embodiment, per-step
freshness is derived from a hardware anchor combined with a volatile salt; in another embodiment,
from a stability-tuned local state vector processed by a strong extractor; in a hybrid embodiment,

both sources are concatenated in the update rule. Optional entropy-anchor rotation with forward
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links renews identity epochs without sacrificing auditability, and biometric-assisted reseeding may

supply additional local unpredictability via privacy-preserving extractors and liveness checks.

[0123] Because identity formation depends on local unpredictability, hash-based commitments,
and bounded proofs—rather than hardness assumptions targeted by Shor-type attacks—the
deployment model is inherently post-quantum aligned. Isolation of legacy interoperability to a
segregated adapter prevents cross-protocol contamination, while two-stage authentication and strict
replay controls provide early discard under load. Collectively, these properties support privacy
preservation, operational autonomy, and verifiable provenance across next-generation distributed,

stateless, and intelligent infrastructures.
16. Definitions

[0124] As used herein, “agent” refers to a cryptographically signed, memory-bearing data object
that acts as a protocol operand within the disclosed substrate. An agent includes a unique identifier, a
payload, a memory field, a transport header, and a signature, and participates in trust-slope formation

and validation as described herein.

[0125] As used herein, “semantic agent” refers to a specialized agent that additionally
comprises an intent field and cognition-compatible structure enabling policy-aware mutation,
delegation, and context-sensitive execution. All semantic agents are agents, but not all agents are

semantic agents.

[0126] As used herein, “policy agent” refers to an agent that encodes quorum rules, mutation
eligibility criteria, role definitions, and related controls. A policy agent may be referenced from
another agent’s memory field to govern eligibility, weighting, and thresholds during validation or

consensus.

[0127] As used herein, “substrate,” “host,” or “node” refers to a computational device or
execution environment that processes agents and maintains a Dynamic Device Hash for its own

identity state.

[0128] As used herein, “Dynamic Agent Hash (DAH)” refers to an ephemeral, memory-
resolved cryptographic identifier generated by an agent as a successor of a prior trusted DAH under
an update rule that incorporates at least one unpredictability contribution and a volatile salt, together

with optional agent-side semantic features.
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[0129] As used herein, “Dynamic Device Hash (DDH)” refers to an ephemeral, memory-
resolved cryptographic identifier generated by a device as a successor of a prior trusted DDH under
an update rule that incorporates at least one unpredictability contribution and a volatile salt, together

with optional device-side role or context features.

[0130] As used herein, “trust slope” refers to the cumulatively validated sequence of DAHs or
DDHs formed by successive, verifiable identity mutations. Trust-slope continuity denotes that a

presented successor is a valid descendant of a previously trusted state under policy-bounded checks.

[0131] As used herein, “entropy” refers to locally available unpredictability used in successor
formation and validation. In one embodiment, entropy is derived from a static hardware anchor
combined with per-epoch volatile salts; in another embodiment, entropy is derived from a stability-
tuned local state vector transformed by a strong extractor; in a hybrid embodiment, both sources are
concatenated. For parameterization, A denotes the effective min-entropy of the per-step contribution

after extraction.

[0132] As used herein, “entropy anchor” refers to the initial unpredictability state from which a
trust slope originates for an agent or device. Anchors may be rotated proactively or reactively and

may be linked forward to subsequent epochs for auditable continuity.

[0133] As used herein, “local state vector (LSV)” refers to a bounded-dimension vector of
locally observable device or execution signals (e.g., counters, timing jitter, I/O micro-variation,
process mix features, or analogous signals) that, after normalization and projection, yields a stability-

tuned representation suitable for extraction without exposing raw state.

[0134] As used herein, “extractor” or “strong randomness extractor’ refers to a cryptographic
function that derives a fixed-length, high-entropy token from the projected local state vector or other
noisy input; the resulting extractor output is used in successor computation or disclosed in bounded

proofs without revealing the underlying state.

[0135] As used herein, “volatile salt” refers to a non-repeating freshness value scoped to a
successor step or epoch and combined with other per-step inputs to prevent replay and cross-context

reusc.
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[0136] As used herein, “host mutation token” refers to a value derived from the executing host’s
current DDH together with mutation class or epoch information, used to entangle an agent-side

successor to the host on which the mutation occurred.

[0137] As used herein, “slope entanglement” refers to the process by which an agent’s
successor DAH is cryptographically bound to the executing host’s contemporaneous DDH via a host

mutation token and a signed entanglement trace.

[0138] As used herein, “entanglement trace” or “lineage entry” refers to a signed record
appended to an agent’s memory capturing the prior DAH, the host DDH, the host mutation token,

the successor DAH, the mutation class, and associated metadata for that mutation step.

[0139] As used herein, “cumulative chain hash” refers to a forward-secure digest computed over
the ordered lineage entries such that omission, reordering, or modification of any entry is detected by

divergence of the terminal cumulative value.

[0140] As used herein, “anchor” refers to a periodic digest computed at selected intervals over
lineage or commitments to enable compact proofs across long histories; an anchor may be used to

“open” a bounded window of entries during validation.

[0141] As used herein, “checkpoint” refers to a retained, trusted state—embedded in an agent or
stored by a verifier—that allows reconstruction of missing successors using bounded proofs without

retaining full history.

[0142] As used herein, “slope proof” refers to a bounded disclosure that includes per-step
materials sufficient to deterministically recompute missing successors from a checkpoint or anchor

without exposing raw local state or static device secrets.

[0143] As used herein, “delayed validation” refers to authenticating a presentation after an
interval of disconnection or latency by replaying successors from a stored checkpoint or anchor

using a supplied slope proof.

[0144] As used herein, “predictive validation” refers to forecasting near-term successors and
acceptance envelopes from observed cadence, mutation classes, and role transitions, and comparing

claimed successors to the forecast to detect drift prior to full discontinuity.
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[0145] As used herein, “acceptance envelope” refers to a policy-defined bound used during
validation or prediction—e.g., a token-space neighborhood radius in the local-state embodiment and

a freshness/cadence window in the hardware-anchor embodiment.

[0146] As used herein, “recovery token” refers to a commitment over a reseeded identity and a
quorum of signed attestations that, when verified under policy, re-anchors an agent’s slope after

memory loss or discontinuity.

[0147] As used herein, “quorum-based reauthentication” refers to recovery of slope continuity
using attestations from eligible peers under a referenced policy, without reliance on persistent

credentials or centralized authorities.

[0148] As used herein, “fallback identifier (FID)” refers to a session-scoped identifier derived
from a transient public key and nonce for interoperability with legacy PKI systems, maintained

within an isolation boundary and excluded from DAH/DDH formation.

[0149] As used herein, “two-stage authentication” refers to header-layer continuity screening of
a presented DAH prior to decryption, followed by payload-layer validation of an embedded sender

DAH after decryption, with failure at either stage causing rejection.

[0150] As used herein, “biometric-assisted reseeding” refers to optional contribution of local
unpredictability derived from a biometric capture via a privacy-preserving fuzzy extractor with

liveness verification, used only to augment reseed operations and never exported.

2 ¢

[0151] As used herein, “scope tag,” “role,” or “mutation class” refers to policy-relevant
metadata recorded with a successor that constrains eligibility, weighting, or acceptance under local

policy during validation or consensus.

[0152] As used herein, “Dynamic Signature Mesh (DSM)” refers to the memory-native
authentication framework in which identity is validated as progression along trust slopes using local

unpredictability, bounded proofs, and anchors, without persistent keys or centralized registrars.

[0153] As used herein, “memory-resolved identity” refers to an identity model in which
authentication depends exclusively on locally retained information—including unpredictability
sources, lineage evidence, and policy-scoped traces—rather than on third-party attestations or long-

lived secrets.
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[0154] As used herein, “Domain separation” means seeding extractors and KDFs with
deployment-fixed public seeds and context tags such that tokens and keys are unlinkable across

domains and epochs.

[0155] As used herein, “near real-time” or “real time” describes a process that occurs or a
system that operates to produce a given result with a slight but acceptable delay between the
occurrence of an event, such as an acquisition of or update to relevant data, and when the given
result is produced. In the context of the present disclosure, a slight but acceptable delay is in the

range of about 250 milliseconds.

[0156] “About” when used herein with reference to a value or range is used in its plain and
ordinary sense as understood by persons of ordinary skill in the art as referring to standard tolerances
for the referenced parameter, and when standard tolerances are not applicable, a value or range of
values defined with “about” is met when a change in the range or value changes the changes the
performance characteristics of the relevant parameter or the performance characteristics of the

system as a whole by not more than five percent (5%).

[0157] The computer-based processing system and method described above may be
implemented in any type of computer system or programming or processing environment, or in a
computer program, alone or in conjunction with hardware. The present disclosure may also be
implemented in software stored on a non-transitory computer-readable medium and executed as a
computer program on a general purpose or special purpose computer. It is further contemplated that
the present invention may be run on a stand-alone computer system, or may be run from a server
computer system that can be accessed by a plurality of client computer systems interconnected over

an intranet network, or that is accessible to clients over the internet.
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What is claimed is:

1. A computer-implemented method for memory-native two-stage authentication, comprising:
generating, by a sender agent, a dynamic agent hash (DAH_t) as a successor of a prior trusted
dynamic agent hash (DAH_ {t—1}) generated by the sender agent, wherein the DAH t is

generated under an update rule that incorporates at least one unpredictability contribution
and a volatile salt;

deriving, by the sender agent, a symmetric encryption key from a current dynamic identity of
a recipient selected from a recipient dynamic agent hash (DAH_R) or a recipient dynamic
device hash (DDH_R);

encrypting a payload with the symmetric encryption key and embedding within the encrypted
payload an embedded sender dynamic agent hash (DAH_S) computed contemporaneously
with the DAH _t;

constructing, by the sender agent, a message comprising a transport header and the encrypted
payload, and placing the DAH t in the transport header and the DAH_S within the
encrypted payload, wherein the message does not include the symmetric encryption key;

transmitting, by the sender agent, the message to the recipient;

receiving, by the recipient, the transmitted message and reconstructing, from a locally
retained trust-slope state for the sender agent that includes at least the DAH_{t—1} most
recently validated and previously accepted by the recipient, an expected successor
candidate for time t under the update rule and within a recipient-defined set of policy-
bounded continuity parameters;

validating, by the recipient, the DAH t against an expected successor candidate;

deriving, by the recipient, a recipient symmetric encryption key from a corresponding one of
DAH R or DDH_R and decrypting the payload;

extracting, by the recipient, the DAH_S from the decrypted payload and validating the
DAH_S against a reconstructed trust slope for the sender agent obtained by advancing the
locally retained trust-slope state under the update rule and within the recipient-defined set
of policy-bounded continuity parameters; and

accepting, by the recipient, the message only upon successful validation of both the DAH t
and the DAH_S.

2. The method of claim 1, wherein the accepting and validating are performed without reliance

on persistent private keys or external certificate authorities.
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3. The method of claim 1, wherein the unpredictability contribution includes a keyed derivation
from a static hardware anchor and a volatile per-epoch salt.

4. The method of claim 1, wherein the unpredictability contribution includes an extractor output
over a stability-tuned local state vector, the extractor output being used without exposing a raw
local state.

5. The method of claim 1, wherein the update rule includes a hardware-anchor derivation and a
local-state extractor output and wherein both the hardware-anchor derivation and the local-state
extractor output are concatenated in the update rule.

6. The method of claim 1, further comprising rotating an entropy anchor upon detection of
staleness and recording a forward link configured to bind a terminal value of a prior epoch to a
new initial identity, and rejecting identifiers from an expired epoch except for bridging proofs
that open through the forward link.

7. The method of claim 1, further comprising forecasting a near-term successor identity and an
acceptance envelope based on cadence statistics and role-transition models; classifying a
presented successor as consistent when the presented successor lies within the acceptance
envelope; and degrading trust, requesting supplemental proofs, or quarantining when the
presented successor falls outside the acceptance envelope.

8. The method of claim 1, further comprising validating, prior to decryption, header-level
continuity of the DAH t against an expected successor and, after decryption, validating payload-
level continuity of the DAH_S against a reconstructed trust slope, and rejecting the message
without external registry lookup upon failure of validation of either header-level continuity of the
DAH t or payload-level continuity of the DAH_S.

9. The method of claim 1, wherein the symmetric encryption key is derived via a key derivation
function keyed by the DAH R or DDH_R and a context tag, and wherein no asymmetric key
exchange is performed.

10. The method of claim 1, wherein, when the sender agent cannot derive a symmetric key
from the DAH_R or DDH_R, deriving, by the sender agent, a provisional key from a last trusted
recipient anchor and, upon decryption failure, performing, by the sender agent, a fallback
including a checkpoint request that yields a bounded proof window or a short challenge—
response rekey handshake.

11. The method of claim 10, further including retrying, by the sender agent, decryption within a

policy-bounded attempt window.
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12. The method of claim 1, further including separating by domain extractor tokens by a fixed
public seed and context tag per deployment, and enforcing by validation an acceptance envelope
that rejects off-manifold drift without exposing raw local state vectors.

13. The method of claim 1, further including applying, by the recipient, a two-epoch acceptance
window for recipient identity, enforcing per-sender rate limits on failed decryptions, and
emitting opaque failure codes to prevent oracle leakage.

14. The method of claim 1, further comprising rotating the DAH t presented in the header at a

policy-defined cadence independent of payload semantics.

15. The method of claim 1, wherein deriving the symmetric key includes performing a key

derivation function keyed by the DAH R or DDH R and a domain-separated context tag, and

wherein the derived key expires with a recipient epoch to prevent cross-epoch decryption.

16. A system for agent mutation entanglement, comprising:

a host device configured to compute a dynamic device hash (DDH t) as a successor of a prior
dynamic device hash (DDH_p) under an update rule that incorporates at least one
unpredictability contribution and a volatile salt;

a semantic agent configured to execute on the host device and to compute a successor dynamic
agent hash (DAH_s) from a prior dynamic agent hash (DAH_p) and a host mutation token
derived from the DDH_t and a mutation class associated with the host device;

an entanglement module configured to emit a signed entanglement trace that records DAH_p,
DDH t, the host mutation token, DAH_p, and mutation metadata; and

a validator configured to accept DAH_s only if the entanglement trace opens to DDH_t under
policy and DAH s is a valid successor of DAH p.

17. The system of claim 16, wherein the host mutation token comprises a cryptographic hash of

DDH _t, mutation class, and epoch information, and the entanglement trace includes a signature

of the host device.

18. The system of claim 16, further including a monitoring module configured to detect invalid
entanglement, cadence anomaly, neighborhood mismatch of extractor outputs, and stale salt, and
to degrade trust-score of the semantic agent or quarantine the semantic agent upon detection of
invalid entanglement, cadence anomaly, neighborhood mismatch of extractor outputs, or stale
salt.

19. The system of claim 16, wherein the semantic agent includes a policy reference to a policy

agent that specifies quorum roles, voting weights, and eligibility for mutation validation, and is
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configured to accept entangled mutations only when quorum roles, voting weights, and eligibility
for mutation validation are consistent with the policy.

20. The system of claim 16, further including a message authentication code configured to
authenticate the entanglement trace by a value derived from DDH _t under a domain-separated
key derivation function in lieu of a digital signature, wherein the key is ephemeral and locally
scoped to an epoch of the host device.

21. The system of claim 16, wherein the host device is configured to employ an ephemeral
signing keypair minted per epoch and destroyed upon rotation, and including a verifier

configured to accept the entanglement trace only when an epoch identifier opens to DDH_t under

policy.
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Abstract

Memory-native authentication in distributed environments is provided in which agents and devices
form dynamic identities as successors along a trust slope using locally retained unpredictability and
policy context, without persistent private keys. A Dynamic Agent Hash (DAH) and a Dynamic
Device Hash (DDH) are computed from a prior state and either a hardware-anchor with volatile salt
or a stability-tuned local state vector processed by a strong extractor, or a hybrid thereof. Messages
employ two-stage validation: a header DAH for transport continuity and an embedded sender DAH
inside the encrypted payload, where the symmetric key is derived from the recipient’s current
DAH/DDH. Agent mutations are entangled to host DDHs and recorded in an append-only lineage
with periodic anchors, enabling delayed and sparse verification, predictive drift detection, entropy-
anchor rotation, and quorum-based recovery after memory loss. An isolated fallback identifier

supports legacy PKI interoperability.
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