
1 Attorney Docket No. 20596-005USU1

SYSTEMS AND METHODS FOR MEMORY-NATIVE IDENTITY AND AUTHENTICATION

RELATED APPLICATION DATA

[0001] This application claims the benefit of priority of U.S. Provisional Patent Application

Serial No. 63/726,519, filed on November 30, 2024, titled “Adaptive Network Framework (ANF) for

Modular, Dynamic, and Decentralized systems”, U.S. Provisional Application Serial No.

63/787,082, filed on April 11, 2025, titled “AQ (Adaptive Query): A Programming Language and

Cognitive Execution Layer for Distributed, Stateful AI”, U.S. Provisional Application Serial No.

63/789,967, filed on April 16, 2025, titled “Cross-Domain Applications of the Adaptive Query

Framework”, U.S. Provisional Patent Application Serial No. 63/800,515, filed on May 6, 2025, titled

“Cognition-Native Semantic Execution Platform for Distributed, Stateful, and Ethically-Constrained

Agent Systems”, each of which is incorporated by reference herein in its entirety.

REFERENCE TO COMPUTER PROGRAM LISTING APPENDIX

[0002] A Computer Program Listing is submitted concurrently with the specification as a TXT

formatted file, with a file name of “20596-005USU1-Computer-Program-Listing-Appendix.txt”, a

creation date of November 13, 2025, and a size of 47 kilobytes. The Computer Program Listing filed

is part of the specification and is incorporated in its entirety by reference.

FIELD

[0003] The present disclosure generally relates to cryptographic systems and methods for

determining digital identify and authentication, and more specifically to systems and methods for

memory-native identity and authentication without keypairs.

BACKGROUND

[0004] Conventional digital identity and authentication systems rely on persistent public-private

keypairs and signature-based validation mechanisms. These systems expose users and devices to

various vulnerabilities, including key compromise, metadata correlation, certificate revocation

failure, and susceptibility to quantum cryptographic attacks. Public key infrastructure (PKI) typically

requires centralized trust anchors, global registries, and persistent key material, making it unsuitable

for decentralized, memory-constrained, or privacy-sensitive environments. Moreover, in ephemeral

or cognition-native systems—such as distributed AI agents or stateless substrates—the requirement

to maintain static credentials is impractical or infeasible. Accordingly, there is a need for systems

and methods that address these shortcomings.

2 Attorney Docket No. 20596-005USU1

SUMMARY OF THE DISCLOSURE

[0005] A computer-implemented method for memory-native two-stage authentication includes

generating, by a sender agent, a dynamic agent hash (DAH_t) as a successor of a prior trusted

dynamic agent hash (DAH_{t−1}) generated by the sender agent, wherein the DAH_t is generated

under an update rule that incorporates at least one unpredictability contribution and a volatile salt,

deriving, by the sender agent, a symmetric encryption key from a current dynamic identity of a

recipient selected from a recipient dynamic agent hash (DAH_R) or a recipient dynamic device hash

(DDH_R), encrypting a payload with the symmetric encryption key and embedding within the

encrypted payload an embedded sender dynamic agent hash (DAH_S) computed contemporaneously

with the DAH_t, constructing, by the sender agent, a message comprising a transport header and the

encrypted payload, and placing the DAH_t in the transport header and the DAH_S within the

encrypted payload, wherein the message does not include the symmetric encryption key,

transmitting, by the sender agent, the message to the recipient, receiving, by the recipient, the

transmitted message and reconstructing, from a locally retained trust-slope state for the sender agent

that includes at least the DAH_{t−1} most recently validated and previously accepted by the

recipient, an expected successor candidate for time t under the update rule and within a recipient-

defined set of policy-bounded continuity parameters, validating, by the recipient, the DAH_t against

an expected successor candidate, deriving, by the recipient, a recipient symmetric encryption key

from a corresponding one of DAH_R or DDH_R and decrypting the payload, extracting, by the

recipient, the DAH_S from the decrypted payload and validating the DAH_S against a reconstructed

trust slope for the sender agent obtained by advancing the locally retained trust-slope state under the

update rule and within the recipient-defined set of policy-bounded continuity parameters, and

accepting, by the recipient, the message only upon successful validation of both the DAH_t and the

DAH_S.

[0006] A system for agent mutation entanglement is provided that includes a host device

configured to compute a dynamic device hash (DDH_t) as a successor of a prior dynamic device

hash (DDH_p) under an update rule that incorporates at least one unpredictability contribution and a

volatile salt, a semantic agent configured to execute on the host device and to compute a successor

dynamic agent hash (DAH_s) from a prior dynamic agent hash (DAH_p) and a host mutation token

derived from the DDH_t and a mutation class associated with the host device, an entanglement

module configured to emit a signed entanglement trace that records DAH_p, DDH_t, the host

3 Attorney Docket No. 20596-005USU1

mutation token, DAH_p, and mutation metadata, and a validator configured to accept DAH_s only if

the entanglement trace opens to DDH_t under policy and DAH_s is a valid successor of DAH_p.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] For the purpose of illustrating the disclosure, the drawings show aspects of one or more

embodiments of the disclosure. However, it should be understood that the present disclosure is not

limited to the precise arrangements and instrumentalities shown in the drawings, wherein:

FIG. 1 illustrates components and steps of a lifecycle of a Dynamic Agent Hash (DAH) or Dynamic

Device Hash (DDH) within the Dynamic Signature Mesh (DSM) in accordance with an embodiment

of the present disclosure;

FIG. 2 illustrates a sparse slope reconstruction process from a checkpoint using bounded proofs and

periodic anchors in accordance with an embodiment of the present disclosure;

FIG. 2A illustrates a stepwise replay process of FIG. 2 in more detail;

FIG. 3 illustrates components for a process for fallback compatibility with legacy, signature-based

systems in accordance with an embodiment of the present disclosure;

FIG. 4 illustrates components of a DSM-secured message and steps for processing the DSM-secured

message in accordance with an embodiment of the present disclosure;

FIG. 5 shows a process for detection and rejection of spoofed or replayed identity claims in

accordance with an embodiment of the present disclosure;

FIG. 6 illustrates components and steps for predictive validation of agent and device identity in

accordance with an embodiment of the present disclosure;

FIG. 7 illustrates components and steps for agent-to-substrate slope entanglement in accordance with

an embodiment of the present disclosure;

FIGS. 8A and 8B illustrate an example of an append-only mutation lineage log for an agent in

accordance with an embodiment of the present disclosure;

FIG. 9 illustrates components and steps for quorum-based recovery after memory loss in accordance

with an embodiment of the present disclosure;

4 Attorney Docket No. 20596-005USU1

FIG. 10 illustrates components and steps for rotation of an entropy anchor and adaptive

reinitialization of a trust slope in accordance with an embodiment of the present disclosure;

FIG. 11 shows components and steps for delayed slope validation under high-latency or intermittent

connectivity conditions in accordance with an embodiment of the present disclosure; and

FIG. 12 provides an overview of components and steps for determining cumulative slope

entanglement across multiple substrate nodes during agent migration in accordance with an

embodiment of the present disclosure.

DETAILED DESCRIPTION

1. Overview

[0008] An authentication architecture is needed that operates securely without persistent keys or

external verification authorities, and instead derives identity from locally retained, time-sensitive,

and context-aware behavioral information. A memory-native identity substrate is provided in which

a device or agent expresses identity as a trust slope—that is, the cumulatively validated sequence of

Dynamic Agent Hashes (DAHs) or Dynamic Device Hashes (DDHs) formed by successive,

verifiable identity mutations—rather than a static credential. Trust-slope continuity denotes that a

presented successor is a valid descendant of a previously trusted state under policy-bounded checks.

Each identity step is computed from the immediately prior step and a source of non-exported

unpredictability, enabling receivers to evaluate continuity and provenance locally, without reliance

on centralized authorities, long-lived keypairs, or synchronized registries.

[0009] In one embodiment, a static hardware anchor is combined with a volatile, non-repeating

salt to derive a per-epoch contribution. In another embodiment, a locally observed state is collected

into a local state vector and transformed by a strong extractor to yield a bounded pseudorandom

token; the token is then combined with a volatile salt. Either of these embodiments alone, or a hybrid

that incorporates both in the same step, produces a successor identity value bound to time, context,

and prior state. In this way, constrained devices can be accommodated that expose a hardware

identifier as well as richer platforms that can derive robust local state vectors.

[0010] The trust slope is append-only and verifiable: a receiver stores any previously trusted

step and evaluates a presented successor against policy-defined continuity criteria. Because each step

binds to the prior step and to non-exported unpredictability, an attacker lacking the device’s local

5 Attorney Docket No. 20596-005USU1

state (or volatile salt) cannot feasibly synthesize valid successors. The continuity policy is tunable to

favor stability within a role or operating context while remaining sensitive to genuine context

changes. This may be achieved by constructing the local state vector with stability-preserving

projections and by verifying bounded drift with error-tolerant sketches.

[0011] Messages are constructed so that identity is bound at both transport and semantic layers.

A sender places the current dynamic hash in the message header for fast, stateless screening at the

receiver, and also embeds the same value inside the protected payload to bind semantics to transport.

In certain embodiments, payload confidentiality and integrity are derived from receiver-local identity

material (e.g., via a key derivation based on the receiver’s current dynamic hash), allowing two-stage

validation that rejects malformed traffic before decryption and prevents man-in-the-middle

substitution after decryption.

[0012] In addition, an append-only lineage mechanism is provided in which each identity step is

committed into a compact chain of commitments with periodic anchors. This permits sparse storage

at senders and receivers while enabling delayed or offline reconstruction of intervening steps. Where

recent anchors are missing or devices are intermittently connected, receivers request short proofs or

checkpoints and verify the recomputed path against stored anchors, preserving verifiability in delay-

tolerant and edge environments.

[0013] To maintain long-term health of the identity process, the system supports reseeding and

anchor rotation policies that detect staleness or environmental drift and initiate controlled re-

anchoring without breaking verifiability; forward links are recorded so downstream verifiers can

bridge old and new anchors under policy. In addition, a quorum-based recovery path allows a device

or agent to rejoin the trust graph after state loss by aggregating attestations from previously trusted

peers, with the recovery token recorded into lineage for downstream audit.

2. Identity Generation and Trust Slope

[0014] FIG. 1 provides a schematic overview of components and a process 100 for the

generation and evolution of a memory-native identity for a device or agent as a verifiable trust slope.

At initialization, a slope root 101 is established by computing a dynamic hash from one of two

exemplary ways. In the first, a static hardware anchor 108 (e.g., TPM, TEE, SoC identifier) is

combined with a volatile salt 109 to yield an unpredictable seed. In a second, a locally observed state

is collected into a local state vector 105, processed by an extractor 106 to produce a bounded

6 Attorney Docket No. 20596-005USU1

pseudorandom token 107, and combined with a volatile salt 109. A semantic context vector 110 and

a memory state indicator 111 may be incorporated to bind role, zone, or process mix to the initial

identity. The resulting dynamic device or agent hash at epoch t=0 establishes DAH₀/DDH₀ at the

slope root 101.

[0015] The initial identity is advanced by an update rule 112 that concatenates the prior hash

with a fresh entropy input and a domain-separating tag to yield the next step on the slope. In one

example, the update is computed as DAHₜ = H(DAHₜ₋₁ ∥ Ext(Xₜ) ∥ saltₜ ∥ tag), where Xₜ is derived

from the local state vector 105 and Ext(·) denotes the extractor 106. Alternatively, the update is

computed as DAHₜ = H(DAHₜ₋₁ ∥ KDF(HWID, saltₜ) ∥ tag) using the hardware anchor 108 and

volatile salt 109. These may be combined by hashing both inputs in a single step to increase

robustness. Application of the update yields successive identities DAH₁ 120, DAH₂ 130, and DAH₃

140 along a verifiable trust slope 150, with arrows 170a–170d indicating the forward-only process

flow rather than hardware connections.

[0016] In the local-state embodiment, the local state vector 105 consists of device-observable

signals sampled within an epoch, including one or more of monotonic counters, high-resolution

timing deltas, CPU performance counters, scheduler jitter statistics, I/O inter-arrival micro-jitter,

optional sensor noise, rolling process histograms, and short-horizon sketches of recent dynamic

hashes. The feature map that produces Xₜ from the local state vector applies normalization and

clipping to bounded ranges, projects to a fixed dimension via signed random projections with a

public seed, optionally appends a discrete context code derived from the semantic context vector

110, and applies a locality-sensitive binarization so that small fluctuations in the local state yield

stable Xₜ while genuine role or zone changes flip a controlled subset of bits. The extractor 106 (e.g.,

a SHA-3/512-based KDF) maps Xₜ to the token 107 with collision and preimage resistance suitable

for use in the update rule described above.

[0017] To align with the example code in the Computer Program Listing, the following steps

may be performed within each epoch: compute Xₜ from the local state vector 105 using the signed-

projection and locality-sensitive mapping just described; compute the token 107 as Ext(Xₜ); compute

DAHₜ by hashing DAHₜ₋₁ with the token 107, the volatile salt 109, and a domain-separating tag; and

record a mutation class 160 identifying the semantic reason for the step (e.g., role update, delegation,

policy commit). Each step appends a trace entry to the memory state 111, thereby enabling

downstream verification that DAHₜ is a valid successor to DAHₜ₋₁ on the trust slope 150.

7 Attorney Docket No. 20596-005USU1

[0018] The hardware-anchor embodiment proceeds analogously but replaces the token 107 with

a keyed derivation from the hardware anchor 108 and the volatile salt 109. The volatile salt 109 is

non-repeating at the device and epoch level, ensuring unpredictability even if the hardware anchor

108 is constant. In the combined embodiment, both the token 107 and a key derivation from the

hardware anchor 108 are included in the same update to produce DAHₜ, thereby retaining

compatibility with constrained devices while benefiting from locally derived state on richer

platforms.

[0019] The trust slope 150 thereby encodes continuity of identity over time as a sequence of

dynamic hashes, each step bound to either the hardware anchor 108 with the volatile salt 109, the

local state vector 105 with the extractor 106, or both. Mutation classes 160 are recorded for each step

to preserve semantic provenance, and arrows 170a–170d indicate that the process is append-only.

The construction enables verifiable identity in disconnected or asynchronous networks, because

validation of the successor relationship between DAHₜ and DAHₜ₋₁ does not require access to

external authorities, keys, or registries.

3. Stateless Symmetric Encryption

[0020] FIG. 4 illustrates an exemplary process 400 in which a sender 401 derives a symmetric

encryption key from a recipient’s 407 current DDH or DAH by applying a key-derivation function to

the recipient identity and a domain-separating context 402. The sender then performs authenticated

encryption over the payload, embedding an additional copy of the sender’s current DAH inside the

ciphertext for payload-layer verification 403. The resulting message 404 contains the header DAH

405 and the encrypted payload 406. When the local-state embodiment is used for identity, the

recipient’s DDH or DAH that seeds key derivation is produced from a local state vector and

extractor as described previously; when the hardware-anchor embodiment is used, the recipient

identity is produced from a hardware anchor combined with a volatile salt; when a hybrid technique

is used, both sources contribute to the same identity value for key derivation.

[0021] Upon receipt 409, the node performs a two-stage validation. First, the node evaluates the

header DAH 410 against its last trusted successor 411 by applying a fast continuity check 412 that

confirms the presented header is an on-slope successor relative to stored state; if continuity cannot

be established from immediately available checkpoints, the node may defer final acceptance 413

until a bounded proof or checkpoint is obtained as described in Section 4. If the check passes 414,

8 Attorney Docket No. 20596-005USU1

the node derives a decryption key from its own current DDH or DAH using a key-derivation step

420 and attempts decryption 430 of the payload 406. Successful decryption demonstrates that the

payload was encrypted for the correct memory-resolved identity state of the recipient at the time of

transmission.

[0022] Following decryption, the node extracts the embedded sender DAH 440 from the

plaintext and compares it to the expected successor on the sender’s trust slope using the receiver’s

stored reference and policy-defined continuity bounds. This payload-layer comparison provides

semantic authentication independent of the transport header, ensuring that both routing-level and

content-level integrity are satisfied before the message is accepted 450. If either stage fails 460, the

node records a rejection 470, optionally degrades the sender’s trust score 480 under local policy, and

may place the message or sender into quarantine 490 for subsequent review.

[0023] In deployments where the sender 401 lacks the recipient’s 407 current DAH or DDH, the

sender derives the symmetric key from the most recent trusted recipient anchor or epoch and

transmits a first attempt under a bounded rekey failure rate. Upon decryption failure, the sender

initiates a fallback comprising either (i) a short challenge–response rekey handshake scoped to the

recipient’s current epoch or (ii) a checkpoint request that yields a bounded proof window sufficient

to advance to the current recipient identity. The two-stage authentication thereafter proceeds using

the updated recipient identity without reliance on external certificate authorities or persistent key

exchange.

[0024] The foregoing allows for stateless operation. The sender and recipient maintain no long-

lived session material; all keys are derived transiently from DAH/DDH values that themselves are

produced by the identity update rules. In embodiments where the local-state vector produces the

identity token via an extractor, stability-tuned projections and error-tolerant sketches ensure that

small fluctuations in local measurements do not cause spurious decryption failures, while genuine

role or context changes intentionally alter the recipient identity and force rekeying. In embodiments

where the hardware anchor and volatile salt produce identity, freshness is preserved by the per-epoch

salt, and in hybrid embodiments both inputs are hashed into the same identity value to improve

robustness across devices and environments.

[0025] An implementable embodiment aligned with the attached reference code performs, at the

sender, a key derivation from the recipient’s current identity using a domain-specific context string

9 Attorney Docket No. 20596-005USU1

and applies authenticated encryption to the payload while embedding the sender’s current DAH

inside the ciphertext; at the receiver, a corresponding derivation from its current identity reproduces

the symmetric key to decrypt the payload, after which the embedded sender DAH is verified against

the stored sender slope. In all cases, header validation, recipient-bound key derivation, payload

decryption, embedded DAH comparison, and failure outcomes are process flows rather than

hardware links and are driven entirely by the memory-native identity substrate and local policy.

4. Trust Slope Validation and Resistance to Spoofing and Replay

[0026] FIG. 5 illustrates a process 500 for the validation of an incoming identity claim against a

previously trusted trust slope to resist spoofing, forgery, and replay. A stored trust slope 501

comprises successive dynamic identities DAH₁ 502, DAH₂ 503, and DAH₃ 504 derived under the

update rules disclosed herein. Upon receipt of a message or agent presentation bearing a claimed

identity DAH_x 510 in its transport header, the executing node evaluates whether the claim is an on-

slope successor relative to its last trusted state under policy-defined continuity bounds.

[0027] In one embodiment, the node performs a fast continuity comparison 520 by

reconstructing the expected successor neighborhood from the most recent trusted value (e.g., DAH₃

503) and verifying that the presented DAH_x 510 is a valid successor. When the local-state

embodiment is used, continuity bounds are enforced using a stability-tuned acceptance radius over

extractor outputs computed from local state vectors; when the hardware-anchor embodiment is used,

bounds are enforced using per-epoch salt freshness and cadence constraints; when a hybrid

embodiment is used, both checks are applied. If the claim satisfies continuity, the node classifies it

as in-slope 530 and proceeds 560; otherwise, the claim is classified off-slope 540 and treated as a

probable spoof or forgery.

[0028] In embodiments employing stability-tuned local state vectors, the node may optionally

validate a short distance sketch accompanying the claim to confirm that the extractor output

corresponding to DAH_x 510 would lie within a policy-defined neighborhood, without revealing the

underlying local state. In hardware-anchor embodiments, the node verifies that the volatile salt used

to derive the presented successor is fresh relative to prior observations and expected cadence. Either

path preserves deterministic rejection of off-manifold or stale claims without reliance on external

registries or long-lived keys.

10 Attorney Docket No. 20596-005USU1

[0029] Replay resistance is achieved by binding acceptance to monotonic progression along the

trust slope and by enforcing non-reuse of previously accepted successors within a policy horizon. If

the presented DAH_x 510 equals a previously accepted value for the same sender and context, or if

it regresses behind the node’s last trusted state, the node rejects the presentation as a replay or

regression. Policy may optionally require that accepted successors advance a local epoch counter or

satisfy a minimum inter-step interval to mitigate rapid replays.

[0030] Failure outcomes 545 are recorded with explicit reasons 550, which may include

continuity violation, neighborhood mismatch, salt staleness, cadence anomaly, or replay detection.

Based on local policy, the node may immediately reject the claim, degrade the sender’s trust score,

or place the sender into quarantine pending further evidence. When continuity is established, the

node accepts the claim, updates its stored reference, and appends a validation trace to its local

memory.

[0031] The foregoing validation operates identically across both unpredictability sources. In the

hardware-anchor embodiment, successors are verified using per-epoch salted derivations of the static

anchor; in the local-state embodiment, successors are verified using extractor tokens derived from

stability-tuned local state vectors; in the hybrid embodiment, both sources are incorporated into each

successor, and either’s anomaly is sufficient to fail continuity. Arrows in FIG. 5 indicate process

flows rather than hardware connections, and acceptance or rejection decisions (530, 540) are driven

entirely by locally available trust-slope lineage and policy without external authorities.

5. Agent Mutation and Substrate Entanglement Mechanisms

[0032] As used herein, an “agent” refers to a cryptographically signed, memory-bearing data

object that acts as a protocol operand within the disclosed substrate and includes a unique identifier,

a payload, a memory field, a transport header, and a cryptographic signature, and participates in

trust-slope formation and validation as described herein. A “semantic agent” is a specialized agent

that additionally comprises an intent field and cognition-compatible structure enabling policy-aware

mutation, delegation, and context-sensitive execution. FIG. 7 illustrates a process 700 for secure

agent mutation with substrate entanglement, in which each agent-side identity transition

[0033] A host node N₁ 701 maintains a current Dynamic Device Hash (DDH₁,t) 702 computed

under the update rules of Section 2. In one embodiment, DDH₁,t 702 is derived from a static

hardware anchor combined with a volatile salt; in another embodiment, it is derived from a local

11 Attorney Docket No. 20596-005USU1

state vector processed by a strong extractor; in a hybrid embodiment, both contributions are included

in the same update. The host also maintains local context and entropy inputs e₁,t 703 used to

parameterize mutation policy for the current epoch. An incoming semantic agent A with prior

Dynamic Agent Hash DAH_{A,t−1} 704 is admitted to the execution context of N₁ 701.

[0034] When agent A initiates a mutation (e.g., role change, delegation, policy commit, or

semantic state transition), the host computes a mutation class indicator m_t 705 and derives a host

mutation token μ₁,t 710/711 bound to the then-current DDH₁,t 702. In one embodiment, μ₁,t 711 is

computed as H(DDH₁,t ∥ m_t ∥ epoch_t); in another embodiment, μ₁,t 711 is a commitment that

additionally binds stability-tuned features of e₁,t 703. The agent’s successor identity DAH_{A,t} 720

is then computed as DAH_{A,t} = H(DAH_{A,t−1} ∥ μ₁,t ∥ Ext(X_{A,t}) ∥ salt_{A,t} ∥ tag),

where Ext(X_{A,t}) is the agent-side extractor output derived from the agent’s memory field and

semantic context at time t, salt_{A,t} is a volatile agent salt, and tag is a domain separator. In

embodiments where the agent does not maintain an agent-side extractor, the term Ext(X_{A,t}) is

omitted and μ₁,t 711 remains the sole mutation driver together with DAH_{A,t−1} 704 and

salt_{A,t}.

[0035] The host records an entanglement trace entry E₁,t 730 that includes (i) DAH_{A,t−1}

731, (ii) DDH₁,t 732, (iii) μ₁,t 733, (iv) the resulting successor DAH_{A,t} 734, and (v) the mutation

class m_t 735, and signs the entry with the host’s private key. The agent appends E₁,t 736 into its

memory field and updates its cumulative commitment C_{A,t} 737 = H(C_{A,t−1} ∥ E₁,t),

providing forward-secure tamper evidence. Arrows 770a–770c indicate process flows rather than

hardware connections.

[0036] Validation of the entangled mutation is local and deterministic. A downstream verifier

replays the agent’s mutation at step 740 by checking that DAH_{A,t} 734 is a valid successor of

DAH_{A,t−1} 731 under the disclosed μ₁,t 733 and salt_{A,t}, verifies the host signature on E₁,t

736, and confirms that μ₁,t 733 is consistent with the referenced DDH₁,t 721 and policy m_t 705.

Because DDH₁,t 702 is itself produced under Section 2’s update rules (hardware-anchor plus salt;

local-state plus extractor; or hybrid), an attacker lacking the host’s device identity inputs cannot

synthesize μ₁,t 733 or forge E₁,t 736 to produce an acceptable DAH_{A,t} 741.

[0037] Agents that traverse multiple substrates accumulate a verifiable trail of entangled

mutations. As shown, when agent A later executes on node N₂ 750, the host’s current DDH₂,t+1 751

12 Attorney Docket No. 20596-005USU1

yields a new host mutation token μ₂,t+1 752, and the agent advances to DAH_{A,t+1} 753 with a

corresponding entanglement trace E₂,t+1 754. A sequence of such entries forms a provenance path

760 tying each agent-side identity transition to the specific host device on which it occurred,

enabling distributed audit and forensic reconstruction without external registries or synchronized

ledgers.

[0038] The entanglement mechanism is agnostic to the unpredictability source used by the host.

In the hardware-anchor embodiment, μ_{*,t} 733/752 incorporates freshness via per-epoch salts

bound to a static anchor; in the local-state embodiment, μ_{*,t} 733/752 includes extractor outputs

over stability-tuned local state; in a hybrid embodiment, both are concatenated within μ_{*,t}. In all

cases, the verifying node fails closed if (i) the host signature on E_{*,t} is invalid, (ii) μ_{*,t} does

not open to a host DDH consistent with policy, or (iii) DAH_{A,t} is not a valid successor under the

disclosed materials.

[0039] Entanglement traces may be authenticated by either (a) a host digital signature or (b) a

message authentication code (MAC) keyed by a value derived from the contemporaneous DDH_t

via a domain-separated key derivation function. In the MAC embodiment, keys are ephemeral and

locally scoped to the host epoch and are never registered or reused across epochs, thereby preserving

the “no persistent keypair” property while enabling verifiable entanglement.

[0040] In embodiments employing signatures, the host may mint an ephemeral signing keypair

per epoch and destroy the private key upon rotation; the entanglement trace includes an epoch

identifier that opens to the host’s DDH_t under policy so that acceptance does not depend on long-

lived signing keys.

[0041] By coupling agent mutation to host device identity, slope entanglement prevents off-

substrate evolution and detects out-of-band tampering. A purported successor lacking a coherent

E_{*,t} 736/754, or referencing a host DDH that cannot be validated under local policy, is rejected

at step 740, and the presentation may trigger trust degradation or quarantine per deployment policy.

FIG. 7 thus demonstrates that each agent mutation step is verifiably anchored to a trusted device

identity (702, 751), with process flows 770d–770f indicating process steps rather than hardware

links.

6. Construction and Validation of Append-Only Mutation Lineage Logs

13 Attorney Docket No. 20596-005USU1

[0042] FIGS. 8A and 8B illustrate a process 800 and components for implementing an append-

only mutation lineage that records the evolutionary history of a semantic agent’s identity as a

tamper-evident sequence of entries. In FIG. 8A, a first lineage entry 810 captures an initial successor

DAH₁ together with the host device identity DDH₁, a semantic context Ctx₁, and a timestamp T₁; the

entry is classified with an initialization class indicator 812 and signed by the executing host. A

subsequent entry 820 advances the agent identity to DAH₂ under a policy-driven mutation class 822,

while a further entry 830 advances to DAH₃ under a migration class 832; each entry is produced by

the successor rule that binds the prior agent identity, a host mutation token derived from the host

DDH at the time of execution, and a freshness input comprising either a hardware-anchor-derived

contribution, a local-state-vector extractor output, or both in a hybrid embodiment, as previously

described with respect to agent–substrate entanglement.

[0043] For each entry i, the agent computes the successor DAH_{i} as H(DAH_{i−1} ∥

μ_{host,i} ∥ Ext(X_{A,i}) ∥ salt_{A,i} ∥ tag) when the local-state embodiment is used, or as

H(DAH_{i−1} ∥ μ_{host,i} ∥ KDF(HWID, salt_{A,i}) ∥ tag) when the hardware-anchor

embodiment is used; in a hybrid configuration the extractor output and the hardware-anchor

contribution are concatenated prior to hashing. Each lineage entry includes the prior DAH, the

resulting DAH, the host DDH in effect at execution, the mutation class, and a timestamp, and the

executing host appends a host-signed entanglement trace that binds μ_{host,i} to the disclosed DDH

for the epoch. Arrows in FIG. 8A indicate process flows rather than hardware connections.

[0044] Integrity of the lineage is preserved by a cumulative chain hash 845 that is updated at

each entry; in one embodiment, the per-entry digest 846-848 is computed over the structured

contents of the entry and then folded into the cumulative hash as C_{i} = H(C_{i−1} ∥), producing a

forward-secure ledger in which any omission, reordering, or modification of entries is detected by

divergence of the terminal cumulative value. In a size-bounded embodiment, periodic anchors 849

are produced every J entries by hashing the then-current cumulative value with the prior anchor,

enabling compact proofs over long histories without retaining all intermediate entries.

[0045] Validation proceeds by bounded replay from a stored reference and the provided

window of entries, as shown for example in FIG. 8B. A verifier issues a lineage request 860 and

receives a proof window 865 comprising the referenced entries (e.g., 810, 820, 830), the

corresponding host signatures, and either a terminal cumulative hash 845 or a set of periodic anchors

849 sufficient to open the window against a previously trusted anchor. The verifier 870 checks that

14 Attorney Docket No. 20596-005USU1

each host signature is valid for the disclosed host identity, recomputes each successor DAH using the

disclosed materials, confirms that the entanglement token for each step is consistent with the

referenced host DDH and mutation class, and folds each per-entry digest (e.g., 846-848) to reach the

terminal cumulative hash 845; acceptance 880 follows when the recomputed cumulative 875 value

opens to the trusted anchor and all per-step checks succeed.

[0046] Replay resistance and non-transferability are enforced during validation by rejecting any

entry whose successor DAH is a regression relative to the verifier’s stored reference or whose

freshness input is stale or inconsistent with policy cadence; entries that reproduce previously

accepted successors for the same sender and context within a replay horizon are rejected as replays.

Tamper attempts, including omission or reordering, are detected when the recomputed cumulative

chain fails to match the provided 845 or cannot be opened against the periodic anchors 849,

producing a tamper finding 890 recorded in local memory under policy.

[0047] The lineage is agnostic to unpredictability source and supports domain-specific

governance. When the hardware-anchor embodiment is used exclusively, the freshness input within

each entry derives from a volatile salt keyed to a static hardware identifier; when the local-state

embodiment is used exclusively, it derives from an extractor over a stability-tuned local state vector;

when hybridized, both inputs are included to strengthen continuity across heterogeneous devices.

Entries may include policy-relevant metadata such as mutation classes 812, 822, 832 and execution

zone identifiers, enabling different trust domains to enforce local acceptance while preserving

cryptographic interoperability through the cumulative chain 845 and anchors 849.

[0048] By recording, signing, and chaining each identity transition, the append-only mutation

lineage of FIGS. 8A and 8B provides verifiable provenance for semantic agents operating across

decentralized substrates, enables incremental validation from recent anchors or comprehensive

reconstruction from a prior trusted point, and detects spoofing, forgery, and replay attempts using

only locally available materials and bounded proofs, without reliance on external authorities,

persistent key registries, or synchronized ledgers.

7. Cumulative Slope Validation Across Distributed Substrates

[0049] FIG. 12 illustrates a process 1200 for cumulative validation of an agent’s identity slope

as the agent migrates across multiple substrate nodes, with each mutation step entangled to the

executing host’s device identity. A semantic agent A enters a first host node N₁ and advances from a

15 Attorney Docket No. 20596-005USU1

prior agent identity to a successor recorded as an entangled step E₁ 1220, bound to the host’s current

Dynamic Device Hash DDH₁ 1210. The agent subsequently executes on nodes N₂ and N₃, producing

further entangled steps E₂ 1222 bound to DDH₂ 1212 and E₃ 1224 bound to DDH₃ 1214,

respectively. The sequence of entangled steps E₁–E₃ forms a tamper-evident multi-node path 1230

capturing both identity evolution and execution provenance across substrates; arrows 1240a–1240c

indicate process flows rather than hardware connections.

[0050] In one embodiment, each entangled step Eᵢ 1220/1222/1224 is constructed according to

the mutation mechanism described with respect to FIG. 7, wherein a host mutation token μᵢ is

derived from the executing host’s current DDHᵢ (e.g., 1210, 1212, 1214) and a mutation class, and

the agent’s successor identity is computed as H(DAH_{i−1} ∥ μᵢ ∥ freshness_i ∥ tag). The freshness

input may be produced from a static hardware anchor combined with a volatile salt, from a local

state vector processed by a strong extractor, or from a hybrid of both sources within the same step;

all three embodiments are enabled and interoperable within the same cumulative path 1230.

[0051] Each entangled step is recorded into the agent’s append-only lineage as a signed entry

that includes the prior DAH, the resulting DAH, the executing host’s DDHᵢ (e.g., 1210, 1212, 1214)

in effect at execution, the mutation class, and a timestamp. Per-entry digests are folded into a

cumulative chain value and, in size-bounded embodiments, periodic anchors 1250-1252 are emitted

at selected intervals to permit compact proofs across long multi-node traversals. Cross-domain

context—such as zone or policy scope—is optionally recorded as a scope tag 1235 to support

federation without centralized oversight.

[0052] A verifier reconstructs the cumulative slope by requesting a windowed proof 1240 that

spans one or more entangled steps (e.g., E₁ 1220 through E₃ 1224) and that opens against either a

previously trusted anchor or a provided periodic anchor 1250-1252. During replay, the verifier

confirms for each step that: the disclosed host signature is valid for the executing host; the host

mutation token μᵢ opens to the recorded DDHᵢ (e.g., 1210, 1212, 1214) under local policy; the

successor DAH recomputed from the disclosed materials matches the recorded successor; and the

cumulative chain value at the end of the window opens to the trusted anchor. Successful

reconstruction yields acceptance 1260; any inconsistency produces a tamper finding 1270 recorded

to local memory.

16 Attorney Docket No. 20596-005USU1

[0053] The cumulative validation is agnostic to the unpredictability source used at each host. In

the hardware-anchor embodiment, per-step freshness is enforced by non-repeating salts bound to a

static device identifier; in the local-state embodiment, freshness derives from extractor outputs over

stability-tuned local state vectors; in the hybrid embodiment, both contributions are concatenated,

and failure of either contribution is sufficient to reject the step. Because validation proceeds by local

replay from prior trusted points using bounded proofs and anchors 1250-1252, the mechanism

tolerates disconnected or asynchronous operation and does not depend on external registries or

synchronized ledgers.

[0054] Where agents traverse administrative or trust boundaries, the scope tag 1235 enables

policy-aware acceptance without global coordination: a verifier may require that steps carrying

particular scope tags be corroborated by specific host roles or quorum attestations before the window

1240 is accepted. By binding every agent-side mutation to a specific host DDH (1210, 1212, 1214)

and chaining those steps into the cumulative path 1230 with periodic anchors 1250-1252, FIG. 12

demonstrates end-to-end, multi-node provenance that is verifiable, replay-resistant, and tamper-

evident using only locally available materials and bounded disclosures.

8. Recovery From Memory Loss: Quorum-Based Reauthorization

[0055] FIG. 9 illustrates a process 900 for recovery of an agent’s trust slope after memory loss,

entropy corruption, or discontinuity, using attestations from previously trusted peers rather than

persistent credentials. An agent that detects the absence or invalidity of its stored lineage initializes a

reseeded identity DAH₀* 910 and emits an attestation request 920 to peers known from prior

interactions; the request is transmitted as a signed semantic agent carrying the new identity state, role

and scope metadata, and any surviving anchors or checkpoint references. The lost-slope condition

900 marks the start of the recovery process; arrows 940a–940c indicate process flows rather than

hardware links.

[0056] Each peer node evaluates the request 920 against locally retained evidence of prior

continuity, including stored checkpoints and anchors, observed mutation classes, and execution

context recorded in lineage logs. In embodiments employing stability-tuned local state vectors, a

short distance sketch of the requester’s prior extractor outputs may be included to support bounded

similarity checks without revealing raw local state; in hardware-anchor embodiments, freshness and

cadence relative to prior salts are verified. A peer that finds the request consistent within policy

17 Attorney Docket No. 20596-005USU1

tolerances issues a signed attestation 930 in the form of a semantic agent that references the

requester’s DAH₀* 910, cites the most recent trusted anchor or checkpoint for the requester, and

records the peer’s own device identity and time of evaluation.

[0057] Attestations 930 are accumulated and aggregated 940 under a quorum policy. In one

embodiment, the aggregation step forms a recovery token 950 computed as a commitment over the

requester’s DAH₀* 910, the set of validating attestations, and a policy identifier specifying quorum

thresholds and weighting. The quorum policy may be defined by an adaptive consensus protocol,

with eligibility, vote weights, and minimum counts determined by a referenced policy agent; the

same process supports both count-based thresholds and trust-weighted thresholds that incorporate

peer reputation or role scope.

[0058] Upon meeting the quorum requirements, the recovery token 950 is accepted as a

successor anchor for the requester’s identity and is appended into the requester’s lineage. Reinsertion

960 attaches the requester to the distributed trust graph with a forward link from DAH₀* 910 to the

accepted recovery anchor embodied by the token 950, enabling downstream verifiers to bridge the

pre-loss and post-loss segments under local policy. Where insufficient attestations are received or

where conflicts are detected, the requester remains quarantined or is directed to retry after additional

observations.

[0059] The recovery mechanism is agnostic to the unpredictability source used to form the

requester’s new identity. In the hardware-anchor embodiment, DAH₀* 910 is derived from a static

anchor and a volatile salt; in the local-state embodiment, DAH₀* 910 is derived from an extractor

over a stability-tuned local state vector and a volatile salt; in a hybrid embodiment, both

contributions are included. Peer evaluation remains local and deterministic in all cases, relying on

previously retained checkpoints, anchors, and lineage evidence rather than external registries or

static key material.

[0060] Verification of the recovery token 950 by third parties proceeds by opening the

aggregated attestations 930 against the signers’ identities and recomputing the commitment

embodied by 950. Acceptance requires that the attesters be eligible under the referenced policy, that

their signatures be valid, and that the attested linkage from the requester’s pre-loss anchors to

DAH₀* 910 satisfy the quorum thresholds. Failure to satisfy any condition results in rejection and

18 Attorney Docket No. 20596-005USU1

optional trust-score adjustment for the requester or for misbehaving attesters, as dictated by local

policy.

[0061] By replacing persistent secrets with quorum-backed attestations grounded in local

memory and prior observation, FIG. 9 provides a reauthentication path that preserves

decentralization, tolerates disconnection, and resists spoofing and replay. The recovery token 950

serves as a durable pivot point for subsequent validation, and the reinsertion step 960 restores

continuity of the requester’s trust slope without reliance on centralized authorities or static keypairs.

9. Entropy Anchor Rotation and Adaptive Slope Reinitialization

[0062] FIG. 10 illustrates a process 1000 for rotation of an entropy anchor and adaptive

reinitialization of a trust slope to preserve freshness, forward secrecy, and policy alignment over

time. A slope health monitor 1005 evaluates one or more indicators of staleness, including elapsed-

epoch thresholds, drift or cadence anomalies in observed successors, entropy reuse heuristics, trust

degradation events, or compromise signals emitted by the substrate. Upon detecting a condition that

satisfies local policy, a staleness determination 1010 triggers reseeding.

[0063] In response, a reseed command 1020 initiates generation of a new entropy anchor E₁

1030 and a corresponding initial identity DAH₀′ or DDH₀′ 1035. In a hardware-anchored

embodiment, E₁ 1030 is derived from a keyed function of a static device identifier and a fresh

volatile salt; in a local-state embodiment, E₁ 1030 is derived from a stability-tuned local state vector

transformed by a strong extractor; in a hybrid embodiment, both contributions are included within

the same derivation. The new initial identity 1035 is computed under the same update rule used

throughout this disclosure with a versioned domain separator to distinguish anchor epochs.

[0064] After anchor rotation, execution proceeds along a new trust slope indicated by process

arcs 1040a–1040c. To preserve verifiability across the transition, a forward link 1050 is recorded

that binds the terminal value of the prior anchor epoch to the new initial identity 1035. The forward

link 1050 enables downstream verifiers to reconcile pre-rotation and post-rotation segments under

policy without requiring global coordination or persistent registries.

[0065] Rotation policy may sandbox or expire the prior slope. In one embodiment, the node

designates the pre-rotation lineage as read-only and unavailable for future successor acceptance,

marks it for archival 1075, and enforces replay prevention 1085 by rejecting presentations that reuse

19 Attorney Docket No. 20596-005USU1

identifiers from the expired epoch. In another embodiment, a grace window permits parallel

acceptance of both epochs solely for bridging proofs that open through the recorded forward link

1050.

[0066] Certain embodiments support biometric-assisted reseeding as an optional source of fresh

local unpredictability. A biometric capture 1060 (e.g., fingerprint, voiceprint, retinal, gait, or

behavioral feature) is pre-processed at step 1062 and transformed by a privacy-preserving fuzzy

extractor 1066 to yield a bounded seed 1064; optional liveness verification 1068 may be applied.

The seed 1064 is never stored or exported in raw form and is used only locally to derive or augment

the new anchor E₁ 1030. The biometric-assisted path composes with both the hardware-anchored and

local-state embodiments by contributing additional non-exported unpredictability to the reseed

command 1020.

[0067] Validation under rotation is local and deterministic. A verifier that encounters a rotated

identity requests or receives bounded proofs that include the forward link 1050 and the new initial

identity 1035; the verifier then replays successors along arcs 1040a–1040c and confirms that the new

epoch opens to the prior epoch through 1050 in accordance with policy. Because E₁ 1030 and 1035

are produced by the same permitted sources—hardware anchor with volatile salt, local state vector

with extractor, or hybrid—the verification logic is uniform across epochs.

[0068] In privacy-sensitive deployments, the DAH presented in transport headers may rotate at

a policy-defined cadence independent of payload semantics to reduce linkability. Verifiers reconcile

rotations by opening forward links or anchors recorded for each header epoch, preserving

auditability while limiting long-range correlation.

[0069] As depicted in FIG. 10, entropy anchor rotation thus maintains high-entropy, memory-

resolved identity across a device or agent’s operational lifetime. The slope health monitor 1005

detects staleness 1010, reseeding 1020 establishes a new anchor 1030 and initial identity 1035,

execution continues along a fresh slope 1040a–1040c, and the forward link 1050 preserves auditable

continuity while enabling expiration 1075 and replay protection 1085 for the prior epoch. All arrows

indicate process flows rather than hardware connections.

10. Delayed Validation for High-Latency and Intermittent Systems

20 Attorney Docket No. 20596-005USU1

[0070] FIG. 11 illustrates a process 1100 for delayed validation in environments where

immediate continuity checking is impracticable due to latency, intermittent connectivity, or

disconnection. A sender 1101 prepares a message bearing the sender’s current dynamic identity and

a transmission timestamp T₀ 1110, together with a bounded set of mutation proofs 1120 that

compactly represent the intervening trust-slope evolution since a previously trusted anchor. The

proofs 1120 enable downstream reconstruction without requiring continuous synchronization or

external registries.

[0071] In one embodiment, the set of mutation proofs 1120 includes, for each missing step i in

the transmission window, per-step materials sufficient to deterministically recompute the successor:

an extractor token yᵢ 1122 derived from a stability-tuned local state vector with a per-step volatile

salt, when the local-state embodiment is used; a keyed derivation κᵢ 1124 computed from a static

hardware anchor and a per-step volatile saltᵢ, when the hardware-anchor embodiment is used; or both

1122 and 1124, when a hybrid embodiment is used. The sender may also include an optional

reference to the last periodic anchor Aₖ 1126 or a checkpoint identifier to assist bounded replay.

[0072] Upon receipt, a verifier that lacks a recent anchor 1130 replays the intervening steps by

iteratively applying the update rule with the disclosed per-step materials along process arcs 1140a–

1140c, starting from its last trusted value and proceeding forward to the presented identity associated

with T₀ 1110. For each step, the verifier recomputes the successor from the immediately prior value

and the disclosed token(s) and salt, and, when local-state tokens are used, may evaluate a

neighborhood constraint under local policy to bound drift. When the chain opens to Aₖ 1126 or to the

stored reference and the recomputed terminal value equals the presented value, validation succeeds

and the presentation is accepted 1150.

[0073] If the verifier’s stored state predates Aₖ 1126 or if the supplied proof set 1120 is

insufficient to complete the replay, the verifier issues a checkpoint request 1160 and receives a

bounded checkpoint response 1165 comprising either a newer anchor reference or an additional short

proof window. Because each successor depends only on the immediately prior dynamic identity and

the disclosed per-step materials, delayed verification remains local and stateless once the checkpoint

is obtained.

[0074] If replay fails—because a per-step token is inconsistent, a salt is stale relative to

expected cadence, a neighborhood constraint is violated, or the recomputed terminal value does not

21 Attorney Docket No. 20596-005USU1

match the presented value—the verifier rejects the presentation 1155 under policy. Optional actions

include trust-score adjustment or quarantine pending subsequent corroboration from anchors or

peers.

[0075] The delayed validation mechanism is agnostic to unpredictability source. In the

hardware-anchor embodiment, the proofs 1120 convey keyed derivations 1124 that bind freshness to

per-epoch salts; in the local-state embodiment, the proofs 1120 convey extractor tokens 1122 derived

from stability-tuned local state vectors; in the hybrid embodiment, both are conveyed and

concatenated in the update rule, and failure of either contribution is sufficient to reject the step. In all

cases, acceptance 1150 requires strict monotonic progression within the proof window and prevents

replay by disallowing reuse of previously accepted successors for the same sender and context.

[0076] When header-level continuity validation succeeds yet payload decryption fails due to

recipient identity drift, the recipient advertises its current anchor or checkpoint and the sender retries

once using that anchor; failing that, the sender requests a bounded checkpoint response. Retries are

limited by policy to a fixed attempt window to avoid oracle leakage while ensuring bootstrapping

from sparse state.

[0077] By allowing receivers to authenticate from sparse local state using bounded proof

windows and optional checkpoints, the process outlined in FIG. 11 enables secure operation in

stateless, intermittently connected, or long-duration disconnected deployments while preserving the

memory-resolved authentication model and avoiding reliance on persistent credentials, centralized

authorities, or synchronized ledgers.

11. Sparse Trust Slope Recovery Using Embedded Checkpoints

[0078] FIG. 2 illustrates a process 200 for sparse recovery of a trust slope in memory-

constrained deployments using embedded checkpoints and bounded proofs. A device or agent 201

retains selected identities such as DAH₁ 210 and DAH₄ 215 together with a checkpoint C₂ 220 that

summarizes all validated mutations up to the checkpoint epoch. When continuity must be re-

established from limited local state, a slope proof 230 provides only the per-step materials for the

missing interval, allowing deterministic forward replay from C₂ 220 via a summarized replay group

240, with the per-step procedure unrolled in FIG. 2A.

22 Attorney Docket No. 20596-005USU1

[0079] FIG. 2A depicts the unrolled procedure corresponding to the replay group 240 of FIG. 2.

The verifier loads checkpoint C₂ 220 (step 242), selects a bounded proof window (step 244), and for

each missing step i (step 245) obtains extractor token yᵢ 232 and/or keyed derivation Kᵢ 233 with saltᵢ

(step 246). The verifier recomputes the successor DAHᵢ (step 248) and opens the per-entry

commitment 236ᵢ; when a periodic anchor 238 is present the replay is opened to the anchor (step

249). The replay index is advanced (step 252) and continuation is evaluated under the bounded

window (step 254), where it is determined whether to continue window. If yes, return to step 246; if

no, the window is done and so, upon this completion, a verified terminal for the window is emitted

(step 256) and local state is updated for subsequent acceptance or checkpointing (step 258).

[0080] In one embodiment, the proof 230 includes, for each step i after C₂ 220, an extractor

token bundle 232 comprising yᵢ = Ext(Xᵢ) with a per-step volatile salt, when the local-state

embodiment is used; in another embodiment, the proof includes a keyed-derivation bundle 233

comprising KDF(HWID, saltᵢ) when the hardware-anchor embodiment is used; in a hybrid

embodiment, both 232 and 233 are present and concatenated. The verifier recomputes successors as

DAHᵢ₊₁ = H(DAHᵢ ∥ tokenᵢ ∥ saltᵢ ∥ tag) until the presented value (e.g., DAH₄ 215) is reached.

[0081] Each step in the missing interval is also committed for tamper evidence. A per-entry

commitment 236ᵢ = H(DAHᵢ ∥ tokenᵢ ∥ metaᵢ) is folded into periodic anchors 238 at window size J.

The proof 230 supplies the siblings necessary to open 236ᵢ against C₂ 220 and the relevant anchor

238, yielding validation success 250 when the recomputed chain matches the presentation. The

verifier appends a verification trace to local memory 260 and may roll a new checkpoint C₄ for

future sparse recovery.

[0082] If the stored checkpoint is stale or unavailable, the verifier issues a checkpoint request

270 and receives a bounded checkpoint response 275 containing either an updated checkpoint Cₖ or a

short bridging proof window to the nearest trusted anchor. Because each successor depends only on

the immediately prior DAH and the disclosed per-step materials (232, 233), reconstruction proceeds

locally and does not require external registries, static credentials, or synchronized ledgers.

[0083] The checkpoint mechanism is agnostic to unpredictability source. In the hardware-

anchor embodiment, freshness is enforced through per-epoch salts bound to a static device identifier

and verified via 233; in the local-state embodiment, freshness derives from stability-tuned extractor

tokens 232, optionally accompanied by a compact distance sketch evaluated at replay; in the hybrid

23 Attorney Docket No. 20596-005USU1

embodiment, both contributions must verify for acceptance. Policy controls the checkpoint cadence,

trading storage overhead against replay effort: more frequent C_* checkpoints reduce reconstruction

cost, while sparser checkpoints minimize storage at the expense of longer bounded proofs.

[0084] By retaining sparse identities (210, 215), embedding checkpoints (220), verifying

bounded proofs (230 with 232/233), opening commitments and anchors (236, 238), and supporting

cursor movement via requests and responses (270, 275), the process outlined in FIG. 2 allows for

verifiable recovery of identity continuity in memory-constrained or intermittently connected

environments using only locally available materials and policy-bounded disclosures.

12. Predictive Mutation Verification and Behavioral Drift Detection

[0085] FIG. 6 illustrates a process 600 for predictive validation of agent and device identity by

forecasting expected successor states and bounding acceptable deviation to detect drift or

compromise prior to full slope discontinuity. A forecasting engine 605 operates over a history buffer

610 comprising prior validated dynamic identities, mutation classes, and inter-step cadence statistics.

From this buffer, a cadence estimator 612 and a role-transition model 614 produce forecast

parameters for near-future epochs.

[0086] In one embodiment, the cadence estimator 612 maintains an exponentially weighted

moving average of inter-step intervals and a variance term to predict the expected timing window for

the next successor. The role-transition model 614 encodes a finite-state transition matrix

implementing a first-order Markov chain, in which each row specifies the conditional probabilities

of transitioning from a current mutation class, semantic role, or scope tag to a successor class; the

matrix is row-stochastic with nonnegative entries that sum to one. These predictions yield a most-

likely mutation class \hat{m}_{t+1} and a small set of alternates. The predicted attributes drive an

expected-token generator 620 that forms a neighborhood envelope 622 for the next step on the trust

slope.

[0087] The expected-token generator 620 is compatible with both identity sources. In a local-

state embodiment, it projects recent local-state feature vectors into a stability-tuned space and

computes a predicted extractor token \hat{y}{t+1} together with an acceptance envelope 622

defined as a Hamming ball of radius r around \hat{y}{t+1} (i.e., all tokens whose Hamming distance

from \hat{y}{t+1} is ≤ r), with r calibrated to observed intra-role variation. In a hardware-anchor

embodiment, it predicts salt freshness and cadence bounds for the next per-epoch derivation,

24 Attorney Docket No. 20596-005USU1

yielding an acceptance window over salt reuse and timing. In a hybrid embodiment, both the

\hat{y}{t+1} Hamming-ball envelope and the salt-cadence window are produced, and both must be

satisfied during verification.

[0088] The forecasting engine 605 emits an expected-identity set 630 that may include one or

more predicted successors \widehat{\mathrm{DAH}}{t+1}, \widehat{\mathrm{DAH}}{t+2} (or

\widehat{\mathrm{DDH}}_{\cdot} for devices) together with their acceptance envelopes 622 and

expected inter-step timing. Upon receipt of a presentation bearing a claimed identity 640 (e.g.,

header DAH or embedded sender DAH as previously described), a comparator 650 evaluates

whether the claim lies within the predicted envelope and within the cadence window. If so, the claim

is classified as predicted-trajectory consistent and accepted 655 subject to normal continuity checks.

[0089] Deviations are evaluated as behavioral drift. A drift detector 660 classifies out-of-

envelope claims by type, including cadence anomalies (early/late relative to the estimator 612),

semantic divergence (unexpected mutation class relative to 614), and token-space deviation

(exceeding the acceptance envelope 622 in the local-state embodiment). Policy actions may include

trust-score adjustment 665, requirement for supplemental proof (e.g., a short bounded window from

the sender), or quarantine 668 pending corroboration from peers or anchors.

[0090] Predictive verification composes with delayed or sparse validation. When a verifier lacks

an up-to-date anchor, it may still use the expected-identity set 630 to triage incoming traffic: claims

far outside envelopes are rejected or quarantined immediately, while near-boundary claims are held

until a checkpoint or short proof window arrives. Once checkpoint material is available, standard

replay from the last trusted state confirms or refutes the prediction without reliance on external

registries or static credentials.

[0091] The predictive mechanism is agnostic to unpredictability source. In the hardware-anchor

embodiment, the comparator 650 enforces salt freshness and cadence windows predicted by 612; in

the local-state embodiment, it enforces neighborhood envelopes computed from stability-tuned

projections; in the hybrid embodiment, both must hold. Forecast parameters are continuously

updated from the history buffer 610 as new validated steps arrive, allowing the envelopes 622 to

tighten or relax adaptively with observed behavior while preserving sensitivity to genuine role

changes indicated by the transition model 614.

25 Attorney Docket No. 20596-005USU1

[0092] This combination of the forecasting engine 605, cadence estimator 612, role-transition

model 614, expected-token generator 620 with acceptance envelopes 622, comparator 650, drift

detector 660, and policy outcomes 655/665/668 provides early, local detection of compromise or

unauthorized mutation while maintaining interoperability with the trust-slope continuity checks

disclosed herein. Arrows in FIG. 6 indicate process flows rather than hardware connections.

13. Compatibility with Legacy Systems Using Fallback Identifiers

[0093] FIG. 3 illustrates a process 300 that allows for interoperability with legacy systems that

rely on persistent public–private keypairs and PKI-style signatures, while preserving isolation from

the memory-resolved trust slope. A fallback identifier is constructed for the sole purpose of a legacy

session and is cryptographically segregated from Dynamic Agent Hash (DAH) and Dynamic Device

Hash (DDH) evolution.

[0094] In one embodiment, a legacy-bridge adapter 310 generates a transient keypair 320 and a

session nonce 322 scoped by a domain-separating context tag. The adapter derives a fallback

identifier FID 330 as FID = H(PK_pub ∥ nonce ∥ ctx_tag), where PK_pub is the public key of 320.

The FID 330 is maintained inside an isolation boundary 340 that prevents any use of PK_pub, the

nonce 322, or the FID 330 in DAH/DDH update rules. A local, volatile mapping table 352 records

{FID 330 ↔ session metadata} for the duration of the session only.

[0095] For outbound interoperability, the adapter 310 composes a legacy message that carries

FID 330 and a PKI signature 350 over the required legacy fields using the private key of 320.

Transport and acceptance by the legacy counterparty proceed under its PKI policy 305, while the

sender’s DAH/DDH slope remains unchanged and continues to govern local routing, caching, or

semantic authorization. No fallback material is hashed into DAH/DDH, and no DAH/DDH material

is exported to the legacy side.

[0096] For inbound interoperability, the adapter 310 validates the counterparty’s PKI signature

350 and resolves it to a local FID 330 via the mapping table 352. If local policy requires correlating

the legacy session to a current DAH_t for auditing, the adapter may mint a one-way binding token

355 that attests “FID 330 was serviced while DAH_t was active,” without allowing any legacy-

sourced material to influence successor computation on the trust slope. The binding token 355 is

stored in a segregated audit log 380 and expires with the session.

26 Attorney Docket No. 20596-005USU1

[0097] Fallback lifecycle is strictly bounded. At session termination or policy-defined expiry,

the adapter purges the mapping table entry 352, destroys the transient private key of 320, and marks

FID 330 invalid via teardown 360. Optional revocation metadata 362 can be emitted to prevent reuse

by intermediaries. Because no DAH/DDH update ever incorporates PKI artifacts, teardown 360

cannot perturb the trust slope.

[0098] The isolation boundary 340 enforces non-contamination in both directions. Cross-

contamination detection 370 fails closed if any attempt is made to (i) inject PKI-derived values into

DAH/DDH successors, (ii) export DAH/DDH internals to satisfy legacy authentication, or (iii)

extend a legacy identifier beyond its declared context. Policy may additionally constrain fallback use

to whitelisted legacy domains or require human-in-the-loop approval for high-sensitivity scopes.

[0099] The mechanism is agnostic to unpredictability source. Whether DAH/DDH is formed

from a hardware anchor with volatile salt, a local state vector with extractor, or a hybrid of both, the

legacy bridge 310 operates purely at the adapter boundary and does not alter slope formation,

continuity checks, lineage chaining, delayed verification, or checkpoint replay.

[0100] By confining FID 330 and PKI signature 350 to a segregated adapter path with explicit

teardown 360, and by recording only one-way attestations 355 in an audit log 380, FIG. 3

demonstrates compatibility with legacy ecosystems without diluting memory-native authentication

or enabling persistent surveillance of identity evolution. Arrows in FIG. 3 indicate process flows

rather than hardware connections.

14. Cryptographic Threat Model and DSM Defense Surface

[0101] The Dynamic Signature Mesh (DSM) defines an adversarial model and corresponding

defense surface for memory-resolved authentication in decentralized substrates. Unlike public-key

infrastructures that depend on persistent private keys and hierarchical anchors, DSM validates

identity as deterministic progression along a trust slope whose successors are derived from locally

retained unpredictability and semantic context. The model applies to embodiments that derive

dynamic identities from a hardware anchor with per-epoch volatile salt, from a stability-tuned local

state vector processed by a strong extractor, or from a hybrid that concatenates both sources.

[0102] Resistance to static-key compromise follows directly from the absence of long-lived

secrets in the authentication path. A Dynamic Agent Hash (DAH) or Dynamic Device Hash (DDH)

27 Attorney Docket No. 20596-005USU1

is ephemeral, computed per step, and never reused as a standing credential. Observation or

disclosure of any single DAH/DDH does not enable impersonation because acceptance requires

monotonic progression from a prior trusted state under the published update rule and policy-bounded

continuity checks.

[0103] Spoofing and impersonation are mitigated by on-slope continuity verification and

substrate entanglement. A claimant must present a successor that is a valid descendant of the

verifier’s last trusted state and, for agent mutations, must open the host entanglement trace that binds

the step to a specific device identity at execution time. In the hardware-anchor embodiment, per-

epoch salts and cadence bounds prevent reuse; in the local-state embodiment, neighborhood

envelopes over extractor outputs enforce role-consistent drift; in the hybrid embodiment, failure of

either contribution is sufficient to reject the claim.

[0104] Replay is prevented by enforcing non-repetition within a policy horizon and by requiring

forward movement along the slope. Presentations equal to previously accepted successors,

regressions behind the verifier’s stored reference, or claims outside the expected inter-step timing

window are rejected and may trigger automatic trust degradation or quarantine as specified by local

policy.

[0105] Message-layer integrity composes with identity verification through two-stage

authentication. A transport header DAH is screened for continuity prior to decryption; the payload is

then decrypted under a key derived from the recipient’s current identity and must contain an

embedded copy of the sender’s DAH that is itself validated against the sender’s slope. Failure at

either stage yields deterministic rejection and optional policy actions without reliance on external

registries.

[0106] Tamper detection over historical evolution is provided by forward-secure commitments

and periodic anchors on lineage logs. Each entry folds into a cumulative chain; omission, reordering,

or modification of any entry diverges the terminal value and fails opening against the last anchor.

Sparse and delayed verification remain secure because bounded proof windows disclose only per-

step materials sufficient for local recomputation and commitment opening, never raw local state

vectors or static device secrets.

[0107] Quantum threats are addressed by avoiding hardness assumptions vulnerable to Shor’s

algorithm. Security reduces to the unpredictability of per-step inputs and the preimage resistance of

28 Attorney Docket No. 20596-005USU1

the employed hashes and extractors. Let λ denote the min-entropy (in bits) of the per-step

unpredictability contribution after extraction; an offline next-step forgery then has success

probability approximately 2^{−λ} (i.e., two raised to the negative λ). In the presence of quantum

amplitude-amplification search (e.g., Grover’s algorithm), generic attacks achieve only a quadratic

speedup, yielding success probability approximately 2^{−λ/2}. Parameter selection (e.g., 256–512-

bit extractor outputs and 256–512-bit hash digests) provides conservative margins.

[0108] Side-channel and co-residency risks are bounded by locality and diversification. In the

hardware-anchor embodiment, salts are single-use and bound to epochs, preventing cross-context

replay even if a salt is observed. In the local-state embodiment, only short, error-tolerant sketches

may be disclosed for neighborhood checks; sketches are non-invertible and insufficient to

reconstruct raw state. Optional biometric reseeding augments, but never replaces, these sources and

is confined to privacy-preserving fuzzy extractors with liveness verification.

[0109] Host compromise and off-substrate mutation are contained by entanglement and

signatures on mutation traces. A verifier requires that each agent-side mutation include a host-signed

trace whose mutation token opens to the asserted host DDH under policy; steps lacking a coherent

entanglement proof fail closed. Entropy-anchor rotation with forward links permits proactive refresh

without abandoning auditability and prevents stale-epoch replay across anchor boundaries.

[0110] Cross-protocol and downgrade attacks are mitigated by strict isolation of legacy

interoperability. Fallback identifiers and PKI signatures are confined to a segregated adapter whose

materials are never hashed into DAH/DDH updates; any attempted mixing of PKI artifacts with

slope formation triggers fail-closed detection. Session-scoped mappings and explicit teardown

prevent persistence or surveillance across epochs.

[0111] Flooding and admission-control threats are addressed by early discard on header

continuity failure, by mandatory replay protection, and by policy-driven rate limits keyed to sender

slope state. Nodes may degrade trust on repeated near-misses, require supplemental bounded proofs,

or quarantine sources exhibiting cadence or neighborhood anomalies.

[0112] To constrain cross-correlation and token malleability, extractor tokens and any optional

sketches are domain-separated by a fixed public seed and context tag per deployment and are never

reused across domains. Validation applies policy-defined acceptance envelopes that bound token-

29 Attorney Docket No. 20596-005USU1

space neighborhoods; presentations outside the envelope are classified as off-manifold drift and fail

closed without disclosing raw local state vectors.

[0113] Receivers implement a two-epoch acceptance window (current epoch and immediately

prior) and per-sender rate limits keyed to header continuity to mitigate denial-of-service conditions

when senders encrypt under stale recipient identities. Failure responses are opaque and do not leak

rekey status; repeated failures degrade trust under policy and may require a checkpoint-based retry

before further processing.

[0114] Linkability is further constrained by header-level DAH rotation on a fixed cadence with

forward links, preventing persistent correlation of activity while maintaining verifiable continuity

under bounded proofs.

[0115] Collectively, these mechanisms establish a defense surface that resists static-key

compromise, spoofing, replay, mutation tampering, predictive entropy attacks, quantum acceleration,

host compromise, and cross-protocol contamination while remaining compatible with stateless,

intermittent, and federated operation. The protections operate uniformly across hardware-anchor,

local-state, and hybrid embodiments and require only locally available materials, checkpoints, and

bounded disclosures.

15. Deployment Environments and Cognition-Native Adaptability

[0116] The disclosed mechanisms are deployable across heterogeneous substrates, including

stateless execution fabrics, intermittently connected networks, memory-constrained devices,

decentralized multi-domain systems, and cognition-native agent platforms. In all such environments,

identity is validated as progression along a trust slope formed from locally retained unpredictability

and semantic context, without reliance on centralized authorities, long-lived credentials, or

synchronized ledgers.

[0117] In stateless deployments—such as ephemeral edge workers, serverless functions, relay

nodes, and mobile agents operating without durable storage—the system derives Dynamic Agent

Hashes (DAHs) and Dynamic Device Hashes (DDHs) directly from locally available inputs under

the update rules disclosed herein. A minimal conformance profile executes header continuity

screening prior to decryption, derives a symmetric key from the recipient’s current identity, and

appends bounded validation traces; optional checkpointing provides later reconstruction when

30 Attorney Docket No. 20596-005USU1

persistent storage is unavailable. Because no private key material or session state must be preserved

across invocations, stateless operation remains fully interoperable with memory-aware peers.

[0118] In high-latency, disrupted, or disconnected networks—such as delay-tolerant, mesh,

opportunistic, or spaceborne links—the system authenticates using delayed verification and bounded

proof windows. Senders embed per-step materials sufficient for local replay from the verifier’s last

anchor; receivers reconstruct continuity upon reconnect without global synchronization. Sparse

proofs and periodic anchors permit long-haul transit while preserving auditability and replay

resistance.

[0119] In memory-constrained devices—including IoT sensors, wearables, embedded

controllers, and ultra-low-power endpoints—the system employs sparse checkpointing and forward-

secure chaining to bound storage overhead. Devices retain only selected identities and anchors,

reconstructing intervening steps on demand from compact proofs. Policy controls checkpoint

cadence to trade storage for replay effort, and acceptance remains strictly local and deterministic.

[0120] In decentralized and cross-domain environments—such as federated learning, distributed

AI ecosystems, or multi-tenant data exchanges—the system supplies a substrate-independent trust

layer. Nodes validate each other via memory-resolved behavior rather than external registries,

enabling organic formation of trust graphs across administrative boundaries. Agent-side mutations

are entangled to the executing host’s device identity, yielding verifiable provenance during

migration and preventing off-substrate evolution.

[0121] In cognition-native platforms where agents are semantic, memory-bearing operands

with intent fields and policy references, trust-slope continuity ties identity to behavioral integrity

rather than static credentials. Agents can mutate, delegate, reclassify, or reindex under embedded

policy while preserving verifiable lineage through entanglement traces, append-only mutation logs,

and cumulative anchors. Predictive verification further anticipates near-term successors to surface

drift prior to full discontinuity, improving containment and triage.

[0122] The mechanisms are agnostic to unpredictability source. In one embodiment, per-step

freshness is derived from a hardware anchor combined with a volatile salt; in another embodiment,

from a stability-tuned local state vector processed by a strong extractor; in a hybrid embodiment,

both sources are concatenated in the update rule. Optional entropy-anchor rotation with forward

31 Attorney Docket No. 20596-005USU1

links renews identity epochs without sacrificing auditability, and biometric-assisted reseeding may

supply additional local unpredictability via privacy-preserving extractors and liveness checks.

[0123] Because identity formation depends on local unpredictability, hash-based commitments,

and bounded proofs—rather than hardness assumptions targeted by Shor-type attacks—the

deployment model is inherently post-quantum aligned. Isolation of legacy interoperability to a

segregated adapter prevents cross-protocol contamination, while two-stage authentication and strict

replay controls provide early discard under load. Collectively, these properties support privacy

preservation, operational autonomy, and verifiable provenance across next-generation distributed,

stateless, and intelligent infrastructures.

16. Definitions

[0124] As used herein, “agent” refers to a cryptographically signed, memory-bearing data object

that acts as a protocol operand within the disclosed substrate. An agent includes a unique identifier, a

payload, a memory field, a transport header, and a signature, and participates in trust-slope formation

and validation as described herein.

[0125] As used herein, “semantic agent” refers to a specialized agent that additionally

comprises an intent field and cognition-compatible structure enabling policy-aware mutation,

delegation, and context-sensitive execution. All semantic agents are agents, but not all agents are

semantic agents.

[0126] As used herein, “policy agent” refers to an agent that encodes quorum rules, mutation

eligibility criteria, role definitions, and related controls. A policy agent may be referenced from

another agent’s memory field to govern eligibility, weighting, and thresholds during validation or

consensus.

[0127] As used herein, “substrate,” “host,” or “node” refers to a computational device or

execution environment that processes agents and maintains a Dynamic Device Hash for its own

identity state.

[0128] As used herein, “Dynamic Agent Hash (DAH)” refers to an ephemeral, memory-

resolved cryptographic identifier generated by an agent as a successor of a prior trusted DAH under

an update rule that incorporates at least one unpredictability contribution and a volatile salt, together

with optional agent-side semantic features.

32 Attorney Docket No. 20596-005USU1

[0129] As used herein, “Dynamic Device Hash (DDH)” refers to an ephemeral, memory-

resolved cryptographic identifier generated by a device as a successor of a prior trusted DDH under

an update rule that incorporates at least one unpredictability contribution and a volatile salt, together

with optional device-side role or context features.

[0130] As used herein, “trust slope” refers to the cumulatively validated sequence of DAHs or

DDHs formed by successive, verifiable identity mutations. Trust-slope continuity denotes that a

presented successor is a valid descendant of a previously trusted state under policy-bounded checks.

[0131] As used herein, “entropy” refers to locally available unpredictability used in successor

formation and validation. In one embodiment, entropy is derived from a static hardware anchor

combined with per-epoch volatile salts; in another embodiment, entropy is derived from a stability-

tuned local state vector transformed by a strong extractor; in a hybrid embodiment, both sources are

concatenated. For parameterization, λ denotes the effective min-entropy of the per-step contribution

after extraction.

[0132] As used herein, “entropy anchor” refers to the initial unpredictability state from which a

trust slope originates for an agent or device. Anchors may be rotated proactively or reactively and

may be linked forward to subsequent epochs for auditable continuity.

[0133] As used herein, “local state vector (LSV)” refers to a bounded-dimension vector of

locally observable device or execution signals (e.g., counters, timing jitter, I/O micro-variation,

process mix features, or analogous signals) that, after normalization and projection, yields a stability-

tuned representation suitable for extraction without exposing raw state.

[0134] As used herein, “extractor” or “strong randomness extractor” refers to a cryptographic

function that derives a fixed-length, high-entropy token from the projected local state vector or other

noisy input; the resulting extractor output is used in successor computation or disclosed in bounded

proofs without revealing the underlying state.

[0135] As used herein, “volatile salt” refers to a non-repeating freshness value scoped to a

successor step or epoch and combined with other per-step inputs to prevent replay and cross-context

reuse.

33 Attorney Docket No. 20596-005USU1

[0136] As used herein, “host mutation token” refers to a value derived from the executing host’s

current DDH together with mutation class or epoch information, used to entangle an agent-side

successor to the host on which the mutation occurred.

[0137] As used herein, “slope entanglement” refers to the process by which an agent’s

successor DAH is cryptographically bound to the executing host’s contemporaneous DDH via a host

mutation token and a signed entanglement trace.

[0138] As used herein, “entanglement trace” or “lineage entry” refers to a signed record

appended to an agent’s memory capturing the prior DAH, the host DDH, the host mutation token,

the successor DAH, the mutation class, and associated metadata for that mutation step.

[0139] As used herein, “cumulative chain hash” refers to a forward-secure digest computed over

the ordered lineage entries such that omission, reordering, or modification of any entry is detected by

divergence of the terminal cumulative value.

[0140] As used herein, “anchor” refers to a periodic digest computed at selected intervals over

lineage or commitments to enable compact proofs across long histories; an anchor may be used to

“open” a bounded window of entries during validation.

[0141] As used herein, “checkpoint” refers to a retained, trusted state—embedded in an agent or

stored by a verifier—that allows reconstruction of missing successors using bounded proofs without

retaining full history.

[0142] As used herein, “slope proof” refers to a bounded disclosure that includes per-step

materials sufficient to deterministically recompute missing successors from a checkpoint or anchor

without exposing raw local state or static device secrets.

[0143] As used herein, “delayed validation” refers to authenticating a presentation after an

interval of disconnection or latency by replaying successors from a stored checkpoint or anchor

using a supplied slope proof.

[0144] As used herein, “predictive validation” refers to forecasting near-term successors and

acceptance envelopes from observed cadence, mutation classes, and role transitions, and comparing

claimed successors to the forecast to detect drift prior to full discontinuity.

34 Attorney Docket No. 20596-005USU1

[0145] As used herein, “acceptance envelope” refers to a policy-defined bound used during

validation or prediction—e.g., a token-space neighborhood radius in the local-state embodiment and

a freshness/cadence window in the hardware-anchor embodiment.

[0146] As used herein, “recovery token” refers to a commitment over a reseeded identity and a

quorum of signed attestations that, when verified under policy, re-anchors an agent’s slope after

memory loss or discontinuity.

[0147] As used herein, “quorum-based reauthentication” refers to recovery of slope continuity

using attestations from eligible peers under a referenced policy, without reliance on persistent

credentials or centralized authorities.

[0148] As used herein, “fallback identifier (FID)” refers to a session-scoped identifier derived

from a transient public key and nonce for interoperability with legacy PKI systems, maintained

within an isolation boundary and excluded from DAH/DDH formation.

[0149] As used herein, “two-stage authentication” refers to header-layer continuity screening of

a presented DAH prior to decryption, followed by payload-layer validation of an embedded sender

DAH after decryption, with failure at either stage causing rejection.

[0150] As used herein, “biometric-assisted reseeding” refers to optional contribution of local

unpredictability derived from a biometric capture via a privacy-preserving fuzzy extractor with

liveness verification, used only to augment reseed operations and never exported.

[0151] As used herein, “scope tag,” “role,” or “mutation class” refers to policy-relevant

metadata recorded with a successor that constrains eligibility, weighting, or acceptance under local

policy during validation or consensus.

[0152] As used herein, “Dynamic Signature Mesh (DSM)” refers to the memory-native

authentication framework in which identity is validated as progression along trust slopes using local

unpredictability, bounded proofs, and anchors, without persistent keys or centralized registrars.

[0153] As used herein, “memory-resolved identity” refers to an identity model in which

authentication depends exclusively on locally retained information—including unpredictability

sources, lineage evidence, and policy-scoped traces—rather than on third-party attestations or long-

lived secrets.

35 Attorney Docket No. 20596-005USU1

[0154] As used herein, “Domain separation” means seeding extractors and KDFs with

deployment-fixed public seeds and context tags such that tokens and keys are unlinkable across

domains and epochs.

[0155] As used herein, “near real-time” or “real time” describes a process that occurs or a

system that operates to produce a given result with a slight but acceptable delay between the

occurrence of an event, such as an acquisition of or update to relevant data, and when the given

result is produced. In the context of the present disclosure, a slight but acceptable delay is in the

range of about 250 milliseconds.

[0156] “About” when used herein with reference to a value or range is used in its plain and

ordinary sense as understood by persons of ordinary skill in the art as referring to standard tolerances

for the referenced parameter, and when standard tolerances are not applicable, a value or range of

values defined with “about” is met when a change in the range or value changes the changes the

performance characteristics of the relevant parameter or the performance characteristics of the

system as a whole by not more than five percent (5%).

[0157] The computer-based processing system and method described above may be

implemented in any type of computer system or programming or processing environment, or in a

computer program, alone or in conjunction with hardware. The present disclosure may also be

implemented in software stored on a non-transitory computer-readable medium and executed as a

computer program on a general purpose or special purpose computer. It is further contemplated that

the present invention may be run on a stand-alone computer system, or may be run from a server

computer system that can be accessed by a plurality of client computer systems interconnected over

an intranet network, or that is accessible to clients over the internet.

36 Attorney Docket No. 20596-005USU1

What is claimed is:

1. A computer-implemented method for memory-native two-stage authentication, comprising:

generating, by a sender agent, a dynamic agent hash (DAH_t) as a successor of a prior trusted

dynamic agent hash (DAH_{t−1}) generated by the sender agent, wherein the DAH_t is

generated under an update rule that incorporates at least one unpredictability contribution

and a volatile salt;

deriving, by the sender agent, a symmetric encryption key from a current dynamic identity of

a recipient selected from a recipient dynamic agent hash (DAH_R) or a recipient dynamic

device hash (DDH_R);

encrypting a payload with the symmetric encryption key and embedding within the encrypted

payload an embedded sender dynamic agent hash (DAH_S) computed contemporaneously

with the DAH_t;

constructing, by the sender agent, a message comprising a transport header and the encrypted

payload, and placing the DAH_t in the transport header and the DAH_S within the

encrypted payload, wherein the message does not include the symmetric encryption key;

transmitting, by the sender agent, the message to the recipient;

receiving, by the recipient, the transmitted message and reconstructing, from a locally

retained trust-slope state for the sender agent that includes at least the DAH_{t−1} most

recently validated and previously accepted by the recipient, an expected successor

candidate for time t under the update rule and within a recipient-defined set of policy-

bounded continuity parameters;

validating, by the recipient, the DAH_t against an expected successor candidate;

deriving, by the recipient, a recipient symmetric encryption key from a corresponding one of

DAH_R or DDH_R and decrypting the payload;

extracting, by the recipient, the DAH_S from the decrypted payload and validating the

DAH_S against a reconstructed trust slope for the sender agent obtained by advancing the

locally retained trust-slope state under the update rule and within the recipient-defined set

of policy-bounded continuity parameters; and

accepting, by the recipient, the message only upon successful validation of both the DAH_t

and the DAH_S.

2. The method of claim 1, wherein the accepting and validating are performed without reliance

on persistent private keys or external certificate authorities.

37 Attorney Docket No. 20596-005USU1

3. The method of claim 1, wherein the unpredictability contribution includes a keyed derivation

from a static hardware anchor and a volatile per-epoch salt.

4. The method of claim 1, wherein the unpredictability contribution includes an extractor output

over a stability-tuned local state vector, the extractor output being used without exposing a raw

local state.

5. The method of claim 1, wherein the update rule includes a hardware-anchor derivation and a

local-state extractor output and wherein both the hardware-anchor derivation and the local-state

extractor output are concatenated in the update rule.

6. The method of claim 1, further comprising rotating an entropy anchor upon detection of

staleness and recording a forward link configured to bind a terminal value of a prior epoch to a

new initial identity, and rejecting identifiers from an expired epoch except for bridging proofs

that open through the forward link.

7. The method of claim 1, further comprising forecasting a near-term successor identity and an

acceptance envelope based on cadence statistics and role-transition models; classifying a

presented successor as consistent when the presented successor lies within the acceptance

envelope; and degrading trust, requesting supplemental proofs, or quarantining when the

presented successor falls outside the acceptance envelope.

8. The method of claim 1, further comprising validating, prior to decryption, header-level

continuity of the DAH_t against an expected successor and, after decryption, validating payload-

level continuity of the DAH_S against a reconstructed trust slope, and rejecting the message

without external registry lookup upon failure of validation of either header-level continuity of the

DAH_t or payload-level continuity of the DAH_S.

9. The method of claim 1, wherein the symmetric encryption key is derived via a key derivation

function keyed by the DAH_R or DDH_R and a context tag, and wherein no asymmetric key

exchange is performed.

10. The method of claim 1, wherein, when the sender agent cannot derive a symmetric key

from the DAH_R or DDH_R, deriving, by the sender agent, a provisional key from a last trusted

recipient anchor and, upon decryption failure, performing, by the sender agent, a fallback

including a checkpoint request that yields a bounded proof window or a short challenge–

response rekey handshake.

11. The method of claim 10, further including retrying, by the sender agent, decryption within a

policy-bounded attempt window.

38 Attorney Docket No. 20596-005USU1

12. The method of claim 1, further including separating by domain extractor tokens by a fixed

public seed and context tag per deployment, and enforcing by validation an acceptance envelope

that rejects off-manifold drift without exposing raw local state vectors.

13. The method of claim 1, further including applying, by the recipient, a two-epoch acceptance

window for recipient identity, enforcing per-sender rate limits on failed decryptions, and

emitting opaque failure codes to prevent oracle leakage.

14. The method of claim 1, further comprising rotating the DAH_t presented in the header at a

policy-defined cadence independent of payload semantics.

15. The method of claim 1, wherein deriving the symmetric key includes performing a key

derivation function keyed by the DAH_R or DDH_R and a domain-separated context tag, and

wherein the derived key expires with a recipient epoch to prevent cross-epoch decryption.

16. A system for agent mutation entanglement, comprising:

a host device configured to compute a dynamic device hash (DDH_t) as a successor of a prior

dynamic device hash (DDH_p) under an update rule that incorporates at least one

unpredictability contribution and a volatile salt;

a semantic agent configured to execute on the host device and to compute a successor dynamic

agent hash (DAH_s) from a prior dynamic agent hash (DAH_p) and a host mutation token

derived from the DDH_t and a mutation class associated with the host device;

an entanglement module configured to emit a signed entanglement trace that records DAH_p,

DDH_t, the host mutation token, DAH_p, and mutation metadata; and

a validator configured to accept DAH_s only if the entanglement trace opens to DDH_t under

policy and DAH_s is a valid successor of DAH_p.

17. The system of claim 16, wherein the host mutation token comprises a cryptographic hash of

DDH_t, mutation class, and epoch information, and the entanglement trace includes a signature

of the host device.

18. The system of claim 16, further including a monitoring module configured to detect invalid

entanglement, cadence anomaly, neighborhood mismatch of extractor outputs, and stale salt, and

to degrade trust-score of the semantic agent or quarantine the semantic agent upon detection of

invalid entanglement, cadence anomaly, neighborhood mismatch of extractor outputs, or stale

salt.

19. The system of claim 16, wherein the semantic agent includes a policy reference to a policy

agent that specifies quorum roles, voting weights, and eligibility for mutation validation, and is

39 Attorney Docket No. 20596-005USU1

configured to accept entangled mutations only when quorum roles, voting weights, and eligibility

for mutation validation are consistent with the policy.

20. The system of claim 16, further including a message authentication code configured to

authenticate the entanglement trace by a value derived from DDH_t under a domain-separated

key derivation function in lieu of a digital signature, wherein the key is ephemeral and locally

scoped to an epoch of the host device.

21. The system of claim 16, wherein the host device is configured to employ an ephemeral

signing keypair minted per epoch and destroyed upon rotation, and including a verifier

configured to accept the entanglement trace only when an epoch identifier opens to DDH_t under

policy.

40 Attorney Docket No. 20596-005USU1

Abstract

Memory-native authentication in distributed environments is provided in which agents and devices

form dynamic identities as successors along a trust slope using locally retained unpredictability and

policy context, without persistent private keys. A Dynamic Agent Hash (DAH) and a Dynamic

Device Hash (DDH) are computed from a prior state and either a hardware-anchor with volatile salt

or a stability-tuned local state vector processed by a strong extractor, or a hybrid thereof. Messages

employ two-stage validation: a header DAH for transport continuity and an embedded sender DAH

inside the encrypted payload, where the symmetric key is derived from the recipient’s current

DAH/DDH. Agent mutations are entangled to host DDHs and recorded in an append-only lineage

with periodic anchors, enabling delayed and sparse verification, predictive drift detection, entropy-

anchor rotation, and quorum-based recovery after memory loss. An isolated fallback identifier

supports legacy PKI interoperability.

25299108.1

