
 1 Attorney Docket No. 20596-006USU1

COGNITION-COMPATIBLE SEMANTIC AGENT OBJECTS WITH STRUCTURAL
VALIDATION, PARTIAL AGENT SUPPORT, AND TRACEABLE SEMANTIC LINEAGE

RELATED APPLICATION DATA

[0001] This application claims the benefit of priority of U.S. Provisional Patent Applications

Serial No. 63/789,967, filed on April 16, 2025, titled “Cross-Domain Applications of the Adaptive

Query Framework” and Application Serial No. 63/800,515, filed on May 6, 2025, titled “Cognition-

Native Semantic Execution Platform for Distributed, Stateful, and Ethically-Constrained Agent

Systems”, each of which is incorporated by reference herein in its entirety.

FIELD

[0002] The present disclosure generally relates to distributed computing systems and semantic

execution architectures for artificial intelligence and autonomous software agents. In particular, the

present disclosure is directed to cognition-compatible semantic agent objects with structural

validation, partial agent support, and traceable semantic lineage, and methods thereof.

BACKGROUND

[0003] Distributed computing systems and artificial intelligence architectures increasingly rely

on software agents to perform reasoning, coordination, and task execution across heterogeneous

environments. In many existing systems, agents are implemented as runtime processes, sessions, or

control loops that operate over external data stores, message queues, or orchestration frameworks.

Such approaches treat agent behavior as procedural execution.

[0004] In conventional agent-based systems, semantic intent, memory, trust context, and

governance constraints are typically maintained outside the agent representation, often in application

logic, workflow engines, or session-scoped state. As a result, agent identity and behavior are tightly

coupled to specific execution environments, making it difficult to preserve semantic continuity when

agents are paused, transferred, rehydrated, or executed across stateless or federated systems.

[0005] Some systems attempt to simulate persistence by attaching memory or metadata to agent

payloads; however, in such systems, partial or degraded agent representations are often invalid or

require ad hoc repair logic, leading to fragility, inconsistent behavior, and limited interoperability

across distributed or asynchronous environments.

 2 Attorney Docket No. 20596-006USU1

[0006] Additionally, in existing agent frameworks, semantic integrity, auditability, and trust

verification depend on external orchestration and centralized coordination, which do not scale well

across decentralized systems.

[0007] Accordingly, there is a need for systems and methods that address these shortcomings.

SUMMARY OF THE DISCLOSURE

[0008] A cognition-compatible semantic agent object system includes a semantic agent object

stored in a non-transitory computer-readable medium, the semantic agent object comprising one or

more embedded canonical semantic fields selected from the group consisting of an intent field, a

context block, a memory field, a policy reference field, a mutation descriptor field, and a lineage

field, and a node configured to interact with the semantic agent object and including a set of

instructions that when executed determine whether the semantic agent object is structurally coherent

based on presence of the one or more canonical semantic fields and whether the one or more

canonical semantic fields, to the extent present, are structurally compatible based on a set of rules

that determine whether those fields are permitted to coexist. Whether the semantic agent object is

structurally coherent and whether the one or more canonical semantic fields are structurally

compatible are determined based only on information embedded within the semantic agent object.

[0009] In another aspect, a computer implemented method for validating cognition-compatible

semantic agent objects includes determining whether a semantic agent object is structurally valid

based on presence and coherence of one or more canonical semantic fields embedded within the

semantic agent object, determining mutation eligibility of the semantic agent object using a policy

reference field in the semantic agent object and a mutation descriptor field in the semantic agent

object, and recording validation or mutation outcomes within a memory field of the semantic agent

object. The method is performed without prescribing execution order, scheduling, or runtime control.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] For the purpose of illustrating the disclosure, the drawings show aspects of one or more

embodiments of the disclosure. However, it should be understood that the present disclosure is not

limited to the precise arrangements and instrumentalities shown in the drawings, wherein:

FIG. 1 illustrates an internal structure of a full semantic agent object in accordance with an

embodiment of the present disclosure;

 3 Attorney Docket No. 20596-006USU1

FIG. 2 illustrates a mutation pathway between semantic agent objects in accordance with an

embodiment of the present disclosure;

FIG. 3 illustrates valid configurations of partial semantic agent objects containing subsets of the

canonical fields in accordance with an embodiment of the present disclosure;

FIG. 4 illustrates interoperability between full and partial semantic agent objects in accordance with

an embodiment of the present disclosure;

FIGS. 5A-5B illustrate a resolution scenario through structural scaffolding in accordance with an

embodiment of the present disclosure; and

FIG. 6 illustrates a technique for construction of a traceable semantic lineage graph across multiple

semantic agent objects.

DETAILED DESCRIPTION

1. Introduction to the Cognition-Compatible Agent Schema

[0011] A cognition-compatible agent schema described herein is designed to structurally define

memory-bearing semantic agent objects capable of traceable, policy-constrained behavior across

decentralized systems. Unlike conventional message objects, ephemeral execution payloads, or

session-bound control structures, each agent instantiated under the disclosed schema embeds

semantic goal expression, trust context, behavioral memory, policy references, mutation descriptors,

and lineage continuity within its own internal structure. This structural composition enables semantic

admissibility, governed evaluation, and interoperable reasoning, independent of any particular

execution process.

[0012] The cognition-compatible agent schema defines a canonical structural model in which

semantic agency is represented as a first-class data object rather than as a transient runtime process.

Agents instantiated under the schema are structurally self-describing and carry sufficient internal

information to be validated, interpreted, and governed by receiving nodes based solely on their

internal composition. This object-centric approach allows semantic agents to persist across

asynchronous environments, heterogeneous execution contexts, and federated trust domains while

preserving continuity of identity, governance, and provenance.

 4 Attorney Docket No. 20596-006USU1

[0013] The agent schema specifies six canonical semantic fields: intent, context, memory,

policy, mutation, and lineage. These fields collectively encode the semantic identity, operational

constraints, and evolutionary traceability of an agent. A full semantic agent object comprises all six

canonical fields and supports complete semantic autonomy within the bounds of applicable

governance rules. Partial semantic agent objects, comprising subsets of the canonical fields, remain

structurally valid under the schema and operate through fallback scaffolding, delegation, and

inference mechanisms defined herein. The schema ensures that even minimally instantiated agent

objects may participate in semantic networks and lineage graphs without requiring centralized

coordination or external state reconstruction.

[0014] The cognition-compatible agent schema disclosed herein may operate within and extend

a broader paradigm of cognition-native computing, such as is disclosed in U.S. Nonprovisional

Application No. 19/230,933, titled “Cognition-Native Semantic Execution Platform for Distributed,

Stateful, and Ethically-Constrained Agent Systems,” filed June 6, 2025, the entirety of which is

hereby incorporated by reference. In cognition-native computing systems, semantic reasoning,

memory continuity, governance constraints, and identity are treated as primary architectural

substrates rather than as emergent properties of procedural execution, application logic, or runtime

orchestration. The present disclosure adopts this paradigm by defining semantic agency as a

structurally persistent data-object abstraction that carries its own cognitive state, policy anchors, and

evolutionary history across system boundaries. In this manner, the disclosed agent schema functions

as a cognition-native substrate layer that interoperates with distributed trust, identity, and policy

mechanisms described in the incorporated platform disclosure, while remaining independently

applicable to any system requiring persistent, auditable semantic execution. However, semantic

agent objects and partial semantic agent objects may operate independently of a cognition-native

semantic execution platform and are not dependent on the presence of other cognition-compatible

components in order to maintain structural validity or operational viability.

[0015] By embedding memory, policy, and mutation logic at the structural level, the cognition-

compatible agent schema enables agents to reason, adapt, and refine themselves across distributed

and asynchronous systems. Nodes interacting with agent objects perform structural validation based

on the presence, coherence, and compatibility of available canonical fields, rather than relying on

procedural assumptions, execution history, or shared session state. This validation model supports

deterministic governance enforcement and semantic continuity across system boundaries.

 5 Attorney Docket No. 20596-006USU1

2. The Six Canonical Semantic Fields

[0016] Referring now to FIG. 1, the present disclosure introduces a cognition-compatible agent

schema that defines a semantic agent object as a structurally self-validating data object rather than as

a runtime process, execution session, or procedural control loop. The schema enables memory-

bearing, policy-governed, and traceable semantic agents to operate across decentralized, stateless, or

heterogeneous computing environments without reliance on external orchestration logic or persistent

execution contexts. Structural validation under the schema is performed prior to any semantic

execution, mutation, delegation, or propagation, such that eligibility for semantic participation is a

consequence of structural coherence rather than as a result of runtime execution.

[0017] As illustrated in FIG. 1, a semantic agent object 100 comprises a structured composition

of canonical semantic fields that collectively encode the agent’s identity, constraints, and

evolutionary continuity. Each field is embedded directly within the agent object 100 and is

individually addressable, machine-readable, and subject to structural validation under the cognition-

compatible schema disclosed herein. Arrows shown between fields in FIG. 1 indicate logical

relationships and dependency associations among semantic components and do not represent

procedural execution order, temporal sequencing, control flow, or instruction execution.

[0018] The intent field 110 encodes a semantic objective, goal, or purpose associated with the

semantic agent object 100. The intent field 110 anchors the semantic identity of the agent and

provides a reference point for evaluating permissible behavior, mutation eligibility, and alignment

with governing policies. The intent field 110 may specify a desired outcome, informational target, or

inferential direction without prescribing execution steps or operational procedures.

[0019] The context block 120 records environmental, trust, identity, or domain-specific

metadata associated with the semantic agent object 100. Context metadata may include origin

identifiers, trust scope indicators, role classifications, environmental parameters, or deployment

constraints relevant to interpretation of policy applicability and mutation eligibility. The context

block 120 enables nodes interacting with the agent object 100 to evaluate semantic behavior relative

to localized conditions without requiring centralized coordination or shared session state.

[0020] The memory field 130 retains trace outcomes associated with the semantic agent object

100, including prior evaluations, mutation events, delegation records, scaffolding resolutions, and

validation results. Unlike external logging systems or session-based memory stores, the memory

 6 Attorney Docket No. 20596-006USU1

field 130 is embedded within the agent object itself, allowing semantic history and reasoning context

to propagate with the agent across heterogeneous environments. Memory entries are appended in a

traceable manner to preserve auditability and semantic continuity over time.

[0021] The policy reference field 140 identifies one or more governing policies that define

constraints on permissible behavior, mutation pathways, delegation authority, semantic scope, or

trust thresholds applicable to the semantic agent object 100. Policies identified by the policy

reference field may point to internal policy objects, external policy identifiers, or decentralized

aliasing mechanisms, provided that such references are resolvable and verifiable at validation time.

The policy reference field 140 enables distributed enforcement of governance rules without reliance

on centralized authorities or monolithic control systems.

[0022] The mutation descriptor field 150 defines authorized transformation pathways for the

semantic agent object 100. Mutation descriptors specify conditions, triggers, or constraints under

which the agent’s semantic identity, intent, or structural composition may evolve. The mutation

descriptor field 150 operates in conjunction with the policy reference field 140 and the context block

120 to ensure that semantic evolution occurs only within permitted bounds defined by governance

rules and environmental conditions.

[0023] The lineage field 160 references one or more semantic ancestors of the semantic agent

object 100, forming a traceable graph of semantic inheritance and evolution. The lineage field 160

preserves continuity of semantic identity across agent generations and supports verification of

provenance, role inheritance, policy lineage, and trust relationships within distributed cognition

networks.

[0024] Together, the intent field 110, context block 120, memory field 130, policy reference

field 140, mutation descriptor field 150, and lineage field 160 form a canonical structural schema for

cognition-compatible semantic agents. A full semantic agent comprises all six canonical fields, while

partial semantic agents may comprise a subset of fields and remain structurally valid through

fallback inference, delegation, and scaffolding mechanisms described in subsequent sections.

[0025] By embedding semantic identity, memory continuity, governance constraints, mutation

logic, and lineage tracking directly within the semantic agent object 100, the schema disclosed

herein enables decentralized systems to reason about agent behavior through structural validation at

the data-object level, rather than through procedural execution analysis or external orchestration.

 7 Attorney Docket No. 20596-006USU1

This foundational structure supports subsequent rules for partial agent validation, structural

scaffolding, interoperability, mutation governance, and lineage integrity described herein.

3. Schema-Based Validation of Full and Partial Semantic Agents

[0026] Referring now to FIG. 3, the cognition-compatible agent schema disclosed herein

establishes formal structural validation rules for determining whether a semantic agent object is

compliant for participation in distributed semantic systems. Validation is performed at the data-

object level based on the presence, coherence, and compatibility of canonical semantic fields, rather

than on runtime behavior, execution history, or procedural control flow.

[0027] As illustrated in FIG. 3, a full semantic agent 300 comprises all six canonical semantic

fields, including an intent field 310, a context block 320, a memory field 330, a policy reference

field 340, a mutation descriptor field 350, and a lineage field 360. A full semantic agent is validated

through direct confirmation of field presence and through evaluation of logical coherence among the

fields, including alignment between intent and policy, consistency between memory traces and

mutation descriptors, and continuity of lineage references.

[0028] The schema further defines partial semantic agents as structurally valid agent objects

that include fewer than all six canonical fields, provided that minimum field presence and coherence

thresholds are satisfied. In the embodiment shown in FIG. 3, partial semantic agent A 370 includes

an intent field 310, a context block 320, and a policy reference field 340. This configuration provides

sufficient semantic grounding to express a governed objective within an environmental trust scope,

despite the absence of explicit memory, mutation, or lineage fields.

[0029] Partial semantic agent B 380, also shown in FIG. 3, includes a memory field 330 and a

lineage field 360 without an explicit intent field, context block, policy reference, or mutation

descriptor. Such an agent object remains structurally valid as a reflective or audit-oriented agent

capable of preserving semantic history and provenance, even though it does not initiate semantic

objectives or transformations independently.

[0030] Partial semantic agent C 390 comprises a context block 320, a mutation descriptor field

350, and a lineage field 360. This configuration supports agents that participate in controlled

semantic transformation or delegation under inherited trust and provenance constraints, while

 8 Attorney Docket No. 20596-006USU1

deferring explicit intent resolution or memory accumulation to upstream agents or scaffolded

inference mechanisms.

[0031] Structural validation begins by confirming that a semantic agent object contains at least

two canonical fields selected from the group consisting of intent, context, memory, policy, mutation,

and lineage. This minimum threshold ensures that the agent object possesses sufficient semantic

structure to support deterministic interpretation and governance. Upon satisfying the minimum

threshold, validation proceeds by evaluating the logical compatibility of available fields, including

consistency between policies identified by the policy reference field and mutation descriptors,

alignment between memory traces and lineage anchors, and coherence between intent declarations

and contextual constraints.

[0032] Where one or more canonical fields are absent, the schema permits validation through

fallback inference, delegation, or scaffolding mechanisms, as described in subsequent sections. The

absence of a field does not, by itself, invalidate the agent object, provided that remaining fields can

support coherent semantic interpretation and that inferred or default behaviors are permitted under

applicable governance rules.

[0033] Agent objects that fail minimum field presence thresholds or that exhibit irreconcilable

conflicts among available fields are deemed structurally non-compliant. Such objects may be

rejected, quarantined, or subjected to scaffolding repair procedures according to environmental

policy and validation rules. Validation outcomes are deterministic and reproducible, enabling

decentralized enforcement of schema integrity across heterogeneous systems without reliance on

centralized validators or synchronized state.

[0034] FIG. 3 illustrates representative configurations of full and partial semantic agents that

remain structurally valid under the cognition-compatible schema. The validation model described in

this section enables distributed semantic systems to accept, reason about, and govern agent objects

based solely on their internal structure, supporting scalable interoperability, fault tolerance, and

semantic continuity across distributed and stateless environments.

4. Partial Agents and Structural Incompleteness

[0035] Referring now to FIG. 5, the cognition-compatible agent schema accommodates the

existence and operation of partial semantic agents, which are semantic agent objects containing

 9 Attorney Docket No. 20596-006USU1

fewer than all six canonical fields but remaining structurally valid through fallback inference,

delegation, or environmental scaffolding. Partial agents enable semantic continuity, mutation

propagation, and distributed coordination in asynchronous, resource-constrained, or stateless

environments without requiring full-field instantiation at every lifecycle stage.

[0036] As illustrated in FIG. 5A, one embodiment of a partial semantic agent 500 comprises a

subset of canonical fields including a context block 520 and a policy reference field 540 while

lacking one or more additional fields such as an explicit intent field, memory field, mutation

descriptor, or lineage field. The partial semantic agent 500 is not considered invalid by virtue of

incompleteness alone. Instead, the schema evaluates whether the available fields provide sufficient

semantic structure to support deterministic interpretation and governed participation within the

environment.

[0037] Structural incompleteness is addressed through structural scaffolding logic 550, which

operates as a schema-defined resolution mechanism rather than as procedural execution logic.

Structural scaffolding logic 550 evaluates the fields present in the partial semantic agent 500 and

determines whether missing canonical fields may be resolved under schema-defined rules,

reconstructed, or defaulted in accordance with applicable policies, contextual metadata, and lineage

constraints. The scaffolding logic 550 may be implemented locally by a validating node, federated

system, or trusted peer, provided that resolution outcomes are recorded within the agent object itself.

[0038] In FIG. 5B, the illustrated stages represent logical structural evaluation conditions

applied to a partial semantic agent object (but do not necessarily prescribe execution order,

scheduling, control flow, or runtime behavior). The process depicted reflects a schema-governed

assessment in which fields present in the partial semantic agent are inspected to identify missing

canonical semantic fields, and a determination is made as to whether such missing fields are

resolvable under schema-defined structural rules. Where missing fields are resolvable, the

determination includes whether such fields may be reconstructed, inferred, or defaulted in

accordance with applicable policy references, contextual metadata, and lineage constraints, including

inheritance or anchoring to a prior semantic state. In one embodiment, such resolution results in a

resolved semantic agent representation that includes representations corresponding to all canonical

semantic fields, which may include defaulted, inferred, proxy, or scaffolded field values rather than

semantically complete or executed state. Where missing fields are not resolvable under the

applicable schema-defined rules or policy constraints, the semantic agent object may be structurally

 10 Attorney Docket No. 20596-006USU1

rejected, quarantined, or deferred for later resolution, such outcomes reflecting structural

inadmissibility or unresolved schema constraints rather than semantic error, execution failure, or

behavioral evaluation.

[0039] In the embodiment shown in FIGS. 5A-5B, structural scaffolding logic 550 resolves

missing semantic components to produce a resolved semantic agent 560. The resolved semantic

agent 560 includes an inferred intent field 510 derived from context metadata, policy-defined default

objectives, or lineage inheritance, a memory field 530 initialized to record subsequent validation or

mutation events, and a lineage field 570 anchoring the resolved agent to an origin signature or

upstream semantic ancestor. The context block 520 and policy reference field 540 are preserved

from the partial semantic agent 500 without alteration.

[0040] Fallback inference applied during scaffolding is deterministic and policy-bound. If an

explicit intent field is absent, semantic purpose may be resolved under schema-defined rules from

contextual role definitions, inherited lineage objectives, or policy-encoded default behaviors. If a

memory field is absent, the agent is treated as a first-instance actor, and a blank trace structure is

initialized within the memory field 530 upon resolution. If a lineage field is absent, the scaffolding

logic assigns an origin reference derived from context metadata or environmental trust anchors to

ensure traceability of subsequent evolution.

[0041] Structural scaffolding does not introduce implicit permissions or uncontrolled behavior.

Where a mutation descriptor field is absent, the resolved semantic agent 560 is treated as immutable

unless and until mutation authorization is explicitly granted through policies identified by the policy

reference field, lineage inheritance, or subsequent structural updates. All inferred or defaulted fields

generated by scaffolding are recorded within the memory field 530 as trace outcomes, preserving

transparency and auditability of resolution decisions.

[0042] Partial semantic agents that cannot be resolved through structural scaffolding due to

insufficient field presence, irreconcilable policy conflicts, or invalid contextual metadata are deemed

structurally non-compliant. Such agents may be rejected, quarantined, or deferred for later resolution

according to environmental governance rules. Resolution outcomes are deterministic and

reproducible across validating nodes, enabling decentralized enforcement of schema integrity

without centralized coordination.

 11 Attorney Docket No. 20596-006USU1

[0043] FIG. 5 thus illustrates how partial semantic agents transition through structural

scaffolding into resolved semantic agents capable of participating fully in semantic networks. By

embedding fallback inference and resolution rules within the schema itself, semantic agents remain

interoperable, auditable, and policy-compliant even in the presence of structural incompleteness.

5. Field Interaction Rules and Structural Constraints

[0044] Referring now to FIG. 2, the cognition-compatible agent schema defines not only the

presence of canonical semantic fields but also deterministic interaction rules and structural

constraints governing how those fields may influence, restrict, or validate one another. Field

interactions are enforced at the schema level to preserve semantic coherence, policy compliance, and

traceable lineage across agent evolution, independent of execution environment or runtime

orchestration.

[0045] As illustrated in FIG. 2, an origin semantic agent object 200 comprises an intent field

210, a context block 220, a memory field 230, a policy reference field 240, a mutation descriptor

field 250, and a lineage field 260. These fields collectively define the semantic identity and

governance constraints of the origin semantic agent 200. Structural constraints require that

interactions among these fields remain logically coherent prior to any transformation, including

alignment between the intent field 210 and applicable policies identified by the policy reference field

240, and consistency between memory field 230 entries and lineage field 260 references.

[0046] Mutation is evaluated through mutation evaluation logic 270, which operates as a

schema-defined validation mechanism rather than as procedural execution logic. The mutation

evaluation logic 270 examines the mutation descriptor field 250 of the origin semantic agent 200 in

conjunction with the policy reference field 240 and the context block 220 to determine whether a

proposed semantic transformation is authorized. Mutation evaluation further requires that the

proposed transformation preserve lineage continuity and that any prior semantic commitments

recorded in the memory field 230 remain auditable.

[0047] When mutation is authorized, the schema permits the creation of a derived semantic

agent 280. As shown in FIG. 2, the derived semantic agent 280 may include a modified intent field

210′, an updated context block 220′, an extended memory field 230′, and a refined mutation

descriptor field 250′, while retaining the policy reference field 240 from the origin semantic agent

200. The lineage field 290 of the derived semantic agent 280 references the lineage field 260 of the

 12 Attorney Docket No. 20596-006USU1

origin semantic agent 200, thereby extending the semantic ancestry graph without overwriting or

severing prior lineage relationships.

[0048] Field interaction rules impose strict constraints on permissible transformations. Changes

to the intent field are permitted only when authorized by the policy reference field and when such

changes fall within the scope defined by the mutation descriptor field. Context updates must remain

consistent with trust scope, role definitions, and environmental constraints encoded in the policy

reference field. Memory updates recording mutation events are mandatory for all authorized

transformations and must reflect both the origin semantic agent 200 and the derived semantic agent

280 to preserve traceability.

[0049] The policy reference field governs not only mutation eligibility but also propagation

limits, delegation rights, and semantic scope inheritance. Discrepancies between declared policies

identified by the policy reference field and memory-recorded behavior result in structural validation

failure. Similarly, the mutation descriptor field restricts semantic evolution to explicitly authorized

pathways. Proposed mutations outside defined descriptors are rejected or quarantined without

altering lineage or memory state.

[0050] Lineage continuity is enforced by requiring that all derived semantic agents reference

one or more prior semantic agents through lineage field 290. Lineage references form a directed

graph that preserves provenance, trust inheritance, and semantic accountability across agent

generations. Unauthorized lineage modification or deletion is structurally invalid unless explicitly

permitted by governing policies.

[0051] FIG. 2 thus illustrates a policy-governed mutation pathway in which semantic evolution

occurs through field-level constraints and structural validation, rather than through procedural

execution control. By enforcing interaction rules among intent, context, memory, policy, mutation,

and lineage fields, the cognition-compatible agent schema ensures that semantic agents evolve

deterministically, auditably, and within defined governance boundaries across distributed systems.

6. Agent Role Definitions and Field-Based Typing

[0052] Referring now to FIG. 4, the cognition-compatible agent schema defines semantic agent

roles based on the structural presence, combination, and coherence of canonical semantic fields,

rather than through externally assigned identities, runtime classifications, or procedural logic. Role

 13 Attorney Docket No. 20596-006USU1

determination is performed through field-based typing, enabling distributed systems to interpret

agent capabilities, constraints, and expectations directly from agent object structure.

[0053] As illustrated in FIG. 4, semantic agent A 400 includes an intent field 410, a memory

field 430, and a mutation descriptor field 450. This combination of fields defines an agent

structurally capable of proposing, recording, and evolving semantic objectives within permitted

mutation scopes. The presence of the mutation descriptor field 450 in conjunction with the intent

field 410 enables controlled semantic transformation, while the memory field 430 preserves

traceability of such transformations. Agents exhibiting this structural configuration may be classified

as mutator agents under the schema.

[0054] Semantic agent B 460, also shown in FIG. 4, includes a context block 420, a policy

reference field 440, and a memory field 430, while lacking an explicit intent field or mutation

descriptor. This structural configuration defines an agent oriented toward environmental evaluation,

governance enforcement, and conditional activation. The memory field 430 preserves evaluation

outcomes, while the policy reference field 440 constrains permissible interactions. Agents with this

field composition may be classified as poller agents, capable of observing conditions, applying

policy thresholds, and delegating semantic activity without independently initiating mutation.

[0055] Semantic agent C 480 comprises a context block 420, a policy reference field 440, and a

lineage field 470, without an explicit memory field or mutation descriptor. This configuration

supports agents that inherit semantic authority, trust scope, or governance context from upstream

lineage relationships while deferring mutation and memory accumulation. Such agents may serve as

delegate agents, propagating semantic context and policy constraints across distributed systems

without initiating structural change.

[0056] Role definitions are not fixed or enumerated exhaustively. Instead, the schema permits

additional semantic roles to emerge from other valid combinations of canonical fields, provided that

structural coherence and validation thresholds are satisfied. For example, agents possessing memory

and lineage fields without mutation descriptors may function as reflector agents, preserving and

propagating semantic traceability without altering semantic objectives. Agents possessing context,

policy, and mutation fields without memory may function as resolver agents, instantiated for short-

lived or scoped semantic resolution tasks under strict governance boundaries.

 14 Attorney Docket No. 20596-006USU1

[0057] Agents may transition between roles over time as canonical fields are added, removed,

inferred, or modified through authorized mutation or scaffolding processes. Such role transitions are

constrained by the field interaction rules described in Section 5 above and are recorded within the

memory field when present, preserving auditability of semantic role evolution.

[0058] Interoperability among agents of differing roles is enabled through shared structural

semantics rather than through external role registries or centralized authorities. Nodes interacting

with agents evaluate field presence, policies identified by the policy reference field, and lineage

anchors to determine permissible interactions, delegation eligibility, and trust scope. Role-based

expectations thus emerge naturally from structural composition and validation rather than from

procedural enforcement.

[0059] FIG. 4 illustrates representative interoperability relationships among agents exhibiting

different field-based roles. The depicted relationships demonstrate how agents of varying structural

compositions participate coherently within distributed semantic systems while preserving policy

compliance, lineage continuity, and semantic integrity.

[0060] By defining agent roles through field-based typing, the cognition-compatible agent

schema enables flexible, decentralized role assignment that evolves dynamically with agent

structure. This approach avoids rigid role taxonomies, reduces dependency on centralized

classification systems, and supports scalable semantic coordination across heterogeneous and

stateless environments.

7. Semantic Templates and Contractual Structures

[0061] The cognition-compatible agent schema further supports the use of semantic templates

and contractual structures to standardize instantiation, validation, and controlled evolution of

semantic agent objects across distributed systems. Semantic templates and contractual structures

operate at the schema layer to define expected field compositions, validation thresholds, fallback

behaviors, and mutation permissions without prescribing procedural execution logic or centralized

orchestration.

[0062] A semantic template defines a canonical structural configuration for a class of semantic

agent objects by specifying required canonical fields, optional canonical fields, and permissible field

combinations. Templates may further define acceptable value formats, reference constraints, or

 15 Attorney Docket No. 20596-006USU1

coherence requirements for individual fields. For example, a persistent agent template may require

the presence of an intent field, a memory field, a policy reference field, and a lineage field, while

treating mutation descriptors as optional or conditionally enabled. A delegation-oriented template

may prioritize context blocks and policies identified by the policy reference field while allowing

intent and memory fields to be inferred or scaffolded.

[0063] Semantic templates are not executable programs or workflows. Instead, templates

function as structural schemas against which agent objects are validated. During validation, a

semantic agent object is evaluated for compliance with one or more templates based on field

presence, field coherence, and applicable fallback inference rules. An agent object may satisfy

multiple templates simultaneously or transition between templates as its field composition evolves

through authorized mutation or scaffolding processes.

[0064] Contractual structures extend semantic templates by defining structural constraints and

resolution rules governing how agents instantiated under a given template may participate in

validation, mutation, delegation, or interoperability. A contractual structure may specify, for

example, that an agent missing an explicit intent field must defer semantic action until intent is

resolved through lineage inheritance or contextual inference, or that mutation events under a given

template must be recorded as trace outcomes within the memory field prior to lineage extension.

[0065] Contracts further define permissible fallback behaviors for partial semantic agents.

Where an agent object fails to meet all required template fields, contractual structures specify

whether scaffolding, delegation, or rejection is appropriate, and under what policy constraints such

resolution may occur. These constraints ensure that structural incompleteness does not result in

uncontrolled behavior or silent semantic drift.

[0066] Semantic templates and contractual structures may be referenced within the policy

reference field of a semantic agent object, embedded within environmental governance frameworks,

or distributed through decentralized schema registries. Nodes evaluating agents retrieve applicable

template and contract definitions to perform validation, determine fallback resolution strategies, and

enforce mutation eligibility without requiring per-agent custom logic or centralized control systems.

[0067] Templates enable consistent agent instantiation across distributed environments by

providing predefined structural expectations at creation time. Contractual structures ensure that

agents instantiated under a given template retain semantic coherence and policy compliance

 16 Attorney Docket No. 20596-006USU1

throughout their lifecycle, even as canonical fields are inferred, modified, or partially degraded

during distributed operation.

[0068] FIG. 3 and FIG. 5 support the application of semantic templates and contractual

structures by illustrating how partial semantic agents remain structurally valid under fallback

inference and scaffolding resolution. These figures demonstrate how template-driven validation and

contract-governed resolution preserve semantic continuity and auditability despite incomplete field

composition.

[0069] By embedding semantic templates and contractual structures within the cognition-

compatible agent schema, scalable, decentralized semantic networks are enabled in which agent

instantiation, evolution, and interoperability are governed by structural integrity and embedded

policy, rather than by external orchestration logic or runtime enforcement mechanisms.

8. Interoperability Between Full and Partial Semantic Agents

[0070] The cognition-compatible agent schema ensures that full semantic agents and partial

semantic agents interoperate coherently across distributed systems without requiring centralized

synchronization, shared execution state, or external role registries. Interoperability is achieved

through structural validation, field-aware resolution, and lineage continuity embedded directly

within the semantic agent object model.

[0071] Referring again to FIG. 4, agents of differing structural completeness participate in

shared semantic workflows by exposing canonical fields that permit deterministic interpretation of

intent, policy scope, mutation eligibility, and trust inheritance. Full semantic agents, comprising all

six canonical fields, function as structurally complete anchors within semantic networks. Partial

semantic agents, comprising subsets of canonical fields, remain interoperable by deferring missing

semantic responsibilities through delegation, fallback inference, or structural scaffolding as

permitted under applicable validation contracts.

[0072] When a partial semantic agent interacts with a full semantic agent, the interaction is

evaluated based on field coherence rather than role identity or execution context. For example, a

partial agent lacking an explicit intent field may inherit semantic direction from a full agent through

lineage references or context-based delegation, while preserving its own policy constraints and

contextual scope. Conversely, a full agent delegating semantic tasks to a partial agent evaluates

 17 Attorney Docket No. 20596-006USU1

whether the receiving agent’s available fields satisfy minimum validation thresholds and whether

fallback resolution is permitted under governing policies.

[0073] Interoperability is further governed by trust-scoped inheritance, wherein semantic goals,

policy constraints, or lineage references may propagate between agents only when structural

coherence and contractual permissions allow such inheritance. Agents do not assume authority or

semantic responsibility implicitly; rather, authority propagation is evaluated through explicit field

presence, policies identified by the policy reference field, and lineage anchoring embedded within

the agent objects themselves.

[0074] Where a partial agent’s incompleteness exceeds validation thresholds during interaction,

structural scaffolding mechanisms may be invoked to infer or reconstruct missing fields prior to

participation. Such scaffolding may be performed locally by a validating node, by a peer agent, or by

a federated resolution service, provided that all inferred fields and resolution outcomes are recorded

transparently within the agent’s memory and lineage fields. Agents that cannot be scaffolded

deterministically are excluded from interaction until structural compliance is restored.

[0075] Interoperability does not require uniform infrastructure or synchronized validators.

Nodes interacting with agents parse canonical fields, verify schema compliance, and enforce policy

constraints independently based on the structural information carried by each agent object. As a

result, agents may collaborate across heterogeneous systems, trust domains, and execution

environments while preserving semantic integrity and auditability.

[0076] FIG. 4 illustrates representative interoperability relationships among agents exhibiting

differing structural compositions, demonstrating how delegation, inheritance, and collaboration

occur through shared schema semantics rather than procedural coordination. These relationships

support distributed reasoning chains in which semantic continuity is preserved even as agents vary in

completeness, authority, or lifecycle stage.

[0077] By formalizing interoperability at the schema level, scalable semantic networks in which

cognition-compatible agents cooperate flexibly across decentralized systems are enabled. Structural

interoperability ensures that semantic execution remains consistent, auditable, and policy-compliant

regardless of agent completeness, deployment environment, or transport medium.

9. Serialization and Stateless Compatibility

 18 Attorney Docket No. 20596-006USU1

[0078] The cognition-compatible agent schema defines serialization mechanisms that enable

semantic agent objects to be transmitted, reconstructed, validated, and operated upon across

distributed computing environments, including stateless, ephemeral, or resource-constrained

systems. Serialization preserves the internal structural coherence of the semantic agent object,

ensuring that canonical semantic fields remain machine-readable, verifiable, and interoperable

independent of the environment in which the agent is instantiated or executed.

[0079] Each semantic agent object is serialized as a structured data representation in which the

canonical semantic fields—intent, context, memory, policy, mutation, and lineage—are individually

addressable and independently parseable. Serialization preserves field boundaries, reference

relationships, and validation metadata such that receiving nodes may reconstruct the semantic agent

object without reliance on external session state, centralized registries, or synchronized execution

contexts. Serialized representations may be encoded using extensible object formats capable of

hierarchical field representation and integrity verification.

[0080] Upon receipt of a serialized semantic agent object, a validating node evaluates the

structural presence and coherence of canonical fields in accordance with the schema-defined

validation rules described in preceding sections. Where one or more fields are absent or degraded,

fallback inference or structural scaffolding mechanisms may be applied prior to participation,

delegation, or mutation. Validation outcomes are determined solely from the serialized object

contents and applicable policies identified by the policy reference field, enabling deterministic

interpretation across heterogeneous systems.

[0081] Stateless compatibility is achieved by embedding sufficient semantic metadata within

the context block, policy reference field, memory field, and lineage field of the serialized agent

object to permit independent operation. Nodes receiving serialized agents are not required to

maintain prior knowledge of the agent’s execution history, instantiation environment, or transport

pathway. Semantic continuity is preserved through embedded trace outcomes and lineage references

rather than through persistent session bindings.

[0082] The memory field of a serialized semantic agent object retains trace outcomes

corresponding to prior validation events, mutation authorizations, scaffolding resolutions, or

delegation actions. These trace outcomes may be cryptographically bound to field contents or

lineage anchors to support integrity verification and provenance reconstruction. As a result,

 19 Attorney Docket No. 20596-006USU1

serialized agents enable semantic replay, auditability, and recovery following network disruption,

node failure, or asynchronous propagation.

[0083] Lineage references embedded within serialized agents allow distributed systems to

reconstruct semantic ancestry graphs post hoc without centralized coordination. Nodes may evaluate

lineage continuity, trust inheritance, or mutation provenance using lineage field data alone, enabling

decentralized enforcement of governance and validation rules across stateless transport layers.

[0084] FIG. 1 supports Section 9 by illustrating the internal field structure preserved during

serialization, while FIG. 6 illustrates reconstruction of traceable lineage across multiple serialized

agents propagated through distributed environments. These figures collectively demonstrate how

serialization preserves semantic identity, governance constraints, and auditability independent of

execution context.

[0085] By enabling serialization and stateless compatibility at the semantic agent object level,

resilient, scalable cognition-compatible systems capable of operating across cloud infrastructures,

edge devices, federated networks, intermittently connected environments, and asynchronous

message-passing architectures are supported without dependency on synchronized memory

architectures or centralized execution controllers.

10. Field-Aware Structural Scaffolding and Default Resolution

[0086] The cognition-compatible agent schema incorporates field-aware structural scaffolding

and default resolution mechanisms that enable semantic agent objects with incomplete or degraded

structural configurations to operate coherently within distributed cognitive systems. Structural

scaffolding is applied when a semantic agent object does not satisfy minimum validation thresholds

due to missing, corrupted, or unresolved canonical fields, and operates deterministically under

schema-defined rules rather than through procedural execution logic.

[0087] Referring again to FIG. 5, structural scaffolding is initiated when a semantic agent object

fails validation based on field presence or field coherence. The scaffolding mechanism evaluates the

canonical fields present in the agent object and determines whether missing semantic components

may be resolved under schema-defined rules, reconstructed, or defaulted in accordance with

applicable policies identified by the policy reference field, contextual metadata, lineage anchors, and

 20 Attorney Docket No. 20596-006USU1

environmental governance constraints. Structural scaffolding is applied only when permitted by

schema rules and does not introduce semantic authority beyond that implied by existing fields.

[0088] When an intent field is absent, semantic purpose may be resolved under schema-defined

rules from lineage references, contextual role definitions, or policy-encoded default objectives

associated with the agent’s trust domain. Inferred intent is bounded by policy constraints and lineage

scope and is recorded explicitly within the resolved agent object to preserve transparency and

auditability. Where no permissible inference path exists, the agent object is restricted from initiating

semantic action until intent resolution occurs.

[0089] When a memory field is absent or uninitialized, the scaffolding mechanism initializes a

memory structure capable of recording subsequent validation outcomes, mutation authorizations, and

delegation events. The initialized memory field does not fabricate historical trace outcomes and is

explicitly marked as scaffolded to distinguish inferred state from inherited or prior semantic history.

[0090] When a policy reference field is missing, default governance rules scoped by the agent’s

context block and environmental domain are applied. Such default policies constrain mutation

eligibility, semantic propagation, and delegation authority until explicit policies identified by the

policy reference field are restored or updated through authorized mutation or environmental

discovery. Default policy application is recorded within the agent’s memory field as a trace outcome.

[0091] When a mutation descriptor field is absent, the semantic agent object is treated as

structurally immutable. In this state, the agent is prohibited from altering intent, role classification,

or structural composition until mutation authorization is explicitly granted through policies identified

by the policy reference field, lineage inheritance, or subsequent scaffolded updates. This

immutability constraint prevents uncontrolled semantic drift in partially instantiated agents.

[0092] Structural scaffolding is transparent and traceable. All inferred fields, default resolutions,

and scaffolding interventions are recorded as trace outcomes within the memory field of the resolved

agent object, and associated with lineage anchors where applicable. This ensures that downstream

agents, validating nodes, and auditors may distinguish original agent state from scaffolded state and

evaluate semantic evolution deterministically.

[0093] Structural scaffolding does not guarantee resolution. Semantic agent objects that lack

sufficient canonical fields to permit deterministic inference, or that present irreconcilable conflicts

 21 Attorney Docket No. 20596-006USU1

among context, policy, and lineage constraints, are deemed structurally non-compliant. Such agents

may be rejected, quarantined, or deferred for later resolution according to environmental governance

rules. No semantic authority, mutation permission, or lineage continuity is assumed for unresolved

agents.

[0094] Structural scaffolding resolves structural completeness and semantic admissibility only,

and does not initiate, schedule, or perform execution of semantic actions. Through field-aware

structural scaffolding and deterministic default resolution, cognition-compatible semantic agents

remain operational, auditable, and semantically coherent even in degraded, disconnected, or

minimally initialized environments. These mechanisms enable resilient semantic execution across

distributed systems while preserving strict governance, validation integrity, and traceable semantic

evolution.

11. Schema Governance, Integrity, and Field Provenance

[0095] The cognition-compatible agent schema incorporates structural mechanisms for

enforcing governance, integrity, and provenance of semantic agent objects as they evolve across

distributed systems. Governance is enforced at the data-object level through field coherence

requirements, policy-referenced constraints, and lineage anchoring, enabling semantic networks to

maintain consistency without centralized enforcement layers or external trust registries.

[0096] Schema integrity is maintained by binding the canonical semantic fields of a semantic

agent object to its structural identity. Each canonical field, including the intent field, context block,

memory field, policy reference field, mutation descriptor field, and lineage field, is subject to

integrity verification to ensure that field contents remain consistent with schema-defined interaction

rules and authorized mutation pathways. Structural validation detects unauthorized field

modification, invalid field combinations, or incoherent field relationships and designates affected

agent objects as non-compliant.

[0097] Mutation events, scaffolding resolutions, delegation actions, and validation outcomes are

recorded as trace outcomes within the memory field of the semantic agent object. These trace

outcomes reference the applicable policy constraints and lineage anchors in effect at the time of the

event, forming a verifiable record of semantic evolution. Recording such events within the agent

object itself preserves auditability across serialization, transfer, and rehydration events without

reliance on external logs or centralized monitoring systems.

 22 Attorney Docket No. 20596-006USU1

[0098] Field provenance enforcement is further illustrated with respect to FIG. 6, as described

below. Lineage references form a directed semantic graph that records the ancestry of semantic

identity, mutation authorization, and governance context. This lineage graph enables downstream

nodes to verify that agent behavior and evolution complied with applicable schema rules and policy

constraints at each stage of propagation.

[0099] In some embodiments, integrity verification may be supported by cryptographic

techniques that bind field contents, trace outcomes, or lineage references to verifiable signatures or

hashes. Such techniques ensure that field provenance and mutation history are tamper-evident and

that unauthorized modifications are detectable during structural validation. The use of cryptographic

binding is optional and does not alter the schema-level validation model, which remains independent

of any specific cryptographic implementation.

[0100] Updates to schema definitions, including the introduction of revised field constraints,

additional semantic templates, or modified fallback inference rules, are governed through versioned

policies identified by the policy reference field. Semantic agent objects instantiated under earlier

schema versions may interoperate with agents instantiated under later versions, provided that field

coherence, lineage continuity, and policy resolution remain valid under the governing contracts.

[0101] By embedding governance, integrity enforcement, and provenance tracking within the

semantic agent object itself, decentralized systems are able to reason deterministically about

semantic validity, mutation authorization, and trust inheritance. This approach eliminates

dependence on centralized validation authorities and supports scalable, auditable semantic execution

across heterogeneous and stateless environments.

12. Traceable Semantic Lineage and Provenance Enforcement

[0102] Referring now to FIG. 6, the cognition-compatible agent schema supports construction

and verification of a traceable semantic lineage graph that records semantic ancestry, mutation

authorization, and governance continuity across successive generations of semantic agent objects.

Lineage tracking is performed at the data-object level and does not rely on centralized identity

registries, external audit logs, or synchronized execution state.

[0103] As illustrated in FIG. 6, a semantic agent 600 comprises an intent field 610, a context

block 620, a memory field 630, a policy reference field 640, a mutation descriptor field 650, and a

 23 Attorney Docket No. 20596-006USU1

lineage field 660. The lineage field 660 of semantic agent 600 identifies the agent as an origin or

prior semantic ancestor within a lineage graph. The memory field 630 records trace outcomes

corresponding to validation, instantiation, or authorized mutation events associated with semantic

agent 600.

[0104] Semantic agent 670 is derived from semantic agent 600 through a schema-authorized

mutation or transformation. Semantic agent 670 includes a modified intent field 610′, an updated

context block 620′, an extended memory field 630′, and a refined mutation descriptor field 650′,

while retaining the policy reference field 640. The lineage field 680 of semantic agent 670 references

the lineage field 660 of semantic agent 600, thereby extending the lineage graph and preserving

semantic ancestry without overwriting prior lineage information.

[0105] The memory field 630′ of semantic agent 670 records trace outcomes associated with the

derivation event, including validation of mutation authorization under the policy reference field 640

and compliance with constraints defined by the mutation descriptor field 650. These trace outcomes

preserve an auditable record of semantic evolution embedded directly within the agent object.

[0106] Semantic agent 690 represents a further derivative or delegated agent generated

downstream from semantic agent 670. In the embodiment shown, semantic agent 690 includes a

context block 620′, a memory field 630″, a policy reference field 640, and a lineage field 695, while

lacking an explicit intent field or mutation descriptor. This configuration illustrates that lineage

continuity does not require full field inheritance and that partial semantic agents may remain

provenance-valid within the lineage graph.

[0107] The lineage field 695 of semantic agent 690 references the lineage field 680 of semantic

agent 670, thereby forming a directed semantic ancestry chain spanning semantic agents 600, 670,

and 690. Each lineage reference preserves trust inheritance, policy continuity, and mutation

provenance across agent generations. At no point is lineage rewritten, collapsed, or implicitly

inferred; all lineage relationships are explicitly recorded within the agent objects themselves.

[0108] Lineage validation is performed structurally by evaluating the lineage field in

conjunction with memory trace outcomes and policies identified by the policy reference field. Nodes

interacting with a semantic agent object may verify that each derivation step in the lineage graph was

authorized under applicable policy constraints and mutation descriptors, and that no unauthorized

semantic authority was introduced during agent evolution.

 24 Attorney Docket No. 20596-006USU1

[0109] Arrows depicted in FIG. 6 represent semantic derivation relationships between agent

objects and do not indicate execution order, runtime control flow, or temporal dependency. Lineage

relationships are declarative and structural, enabling post hoc audit, distributed verification, and

deterministic reconstruction of semantic evolution independent of execution context.

[0110] FIG. 6 thus illustrates how the cognition-compatible agent schema preserves traceable

semantic lineage across full and partial semantic agents. By embedding lineage references and trace

outcomes directly within agent objects, decentralized systems enforce provenance, governance, and

trust inheritance without reliance on centralized authorities, external logging systems, or procedural

enforcement mechanisms.

13. Use in Distributed Cognitive Systems and Semantic Networks

[0111] The cognition-compatible agent schema disclosed herein is applicable to a wide range of

distributed cognitive systems and semantic networks in which autonomous or semi-autonomous

agents must operate persistently, cooperatively, and under governance constraints across

heterogeneous computing environments. By embedding semantic identity, memory continuity,

mutation eligibility, policy enforcement, and lineage traceability directly within the agent object, the

schema enables decentralized coordination without reliance on centralized execution control, shared

session state, or monolithic orchestration layers.

[0112] In distributed cognitive systems, semantic agent objects instantiated under the schema

propagate across trust-scoped domains while retaining their structural integrity and governance

constraints. Nodes receiving such agents evaluate canonical fields locally to determine semantic

validity, mutation eligibility, delegation authority, and trust scope. Semantic progression, task

refinement, and delegation decisions are recorded within the agent’s memory and lineage fields,

allowing reasoning continuity to persist as agents traverse execution environments, administrative

boundaries, or network partitions.

[0113] Semantic networks constructed using the disclosed schema support interoperability

among agents of differing structural completeness through schema-based validation, fallback

inference, and structural scaffolding. Partial semantic agents participate in reasoning chains,

delegation workflows, or governance evaluation without requiring full instantiation of all canonical

fields, provided that minimum validation thresholds are satisfied. This enables stateless nodes, edge

 25 Attorney Docket No. 20596-006USU1

devices, asynchronous messaging systems, and federated infrastructures to participate in semantic

execution without maintaining persistent agent runtimes.

[0114] In such environments, semantic agents negotiate role allocation, policy enforcement, and

semantic evolution through field-aware validation rather than procedural messaging or externally

imposed workflows. Governance decisions, trust inheritance, and mutation constraints are enforced

through embedded policies identified by the policy reference field and lineage anchors, allowing

semantic authority to propagate only where structurally permitted. Semantic integrity is preserved

even when agents are serialized, paused, transferred, or reconstructed across execution boundaries.

[0115] Representative applications of the schema include collaborative multi-agent reasoning

systems, decentralized knowledge graph evolution, distributed task delegation frameworks, semantic

governance overlays, and cognition-native coordination layers for artificial intelligence systems. In

each case, agent behavior and evolution are governed by structural contracts embedded within the

agent object rather than by runtime control logic specific to any particular execution platform.

[0116] By anchoring distributed cognitive systems to the disclosed agent schema, a scalable,

resilient foundation for semantic coordination, persistent reasoning, and policy-compliant agent

evolution is provided across heterogeneous and decentralized computing environments.

14. Conclusion

[0117] The cognition-compatible agent schema disclosed herein defines a structural model for

semantic agent objects that are memory-bearing, policy-governed, and traceably evolvable across

distributed computing environments. By formalizing canonical semantic fields, schema-based

validation rules, fallback inference mechanisms, structural scaffolding logic, and lineage-based

provenance tracking, the present disclosure provides a complete and enabling framework for

cognition-native semantic execution independent of runtime orchestration, transport protocol, or

execution substrate.

[0118] The embodiments described throughout this specification demonstrate that semantic

agents structured in accordance with the disclosed schema may be instantiated, validated,

propagated, mutated, serialized, and rehydrated across heterogeneous systems while preserving

semantic continuity, governance constraints, and auditability. Full semantic agents and partial

 26 Attorney Docket No. 20596-006USU1

semantic agents are both supported under deterministic structural rules, enabling resilient operation

in stateless, asynchronous, federated, or resource-constrained environments.

[0119] Implementation can occur without requiring any specific programming language,

execution engine, messaging protocol, cryptographic primitive, or centralized authority. The

techniques can be accomplished at the data-object and schema level, such that semantic behavior,

mutation eligibility, and governance enforcement arise from structural validation of the agent object

itself. This abstraction ensures broad applicability and avoids a need for coupling to any particular

software architecture or technological implementation.

[0120]

[0121] The modularity of the disclosed schema further enables extensions that may include

dynamic schema evolution mechanisms, distributed template registries, agent federation and identity

resolution systems, trust graph construction, semantic governance overlays, biologically anchored

agents, cognition-aware policy enforcement, or large-language-model-driven mutation and agent

modification systems.

[0122] The disclosed schema further enables separation of semantic authority from execution

logic in emerging autonomous and self-modifying systems.

[0123] By separating semantic identity, governance, memory, and evolution from execution-

layer behavior, a durable and extensible foundation is provided for future cognition-native

computing systems.

15. Definitions

[0124] As used herein, the term “agent,” “semantic agent,” “agent object,” or “semantic agent

object” refers to a memory-bearing data object structured in accordance with the cognition-

compatible schema disclosed in this specification. An agent is defined by the presence of one or

more canonical semantic fields that collectively encode semantic intent, governance constraints,

mutation eligibility, and traceable lineage. An agent is distinguished from a runtime process,

execution thread, or session construct, and exists independently of any particular execution

environment.

 27 Attorney Docket No. 20596-006USU1

[0125] As used herein, the term “intent field” refers to a semantic component of an agent object

that expresses a goal, objective, purpose, or semantic direction associated with the agent. The intent

field provides a declarative anchor for evaluating permissible behavior, policy alignment, and

mutation eligibility without encoding procedural steps, control logic, or execution instructions.

[0126] As used herein, the term “context block” or “context field” refers to a structured

collection of metadata associated with an agent object that informs interpretation of intent, policy

applicability, trust scope, and environmental conditions. Context metadata may include, without

limitation, origin identifiers, deployment attributes, trust domains, role indicators, or environmental

parameters relevant to localized semantic evaluation.

[0127] As used herein, the term “memory field” refers to a canonical semantic field embedded

within an agent object that records trace outcomes corresponding to validation events, mutation

authorizations, delegation actions, scaffolding resolutions, or other semantic evolution events. The

memory field preserves reasoning continuity, auditability, and semantic history across serialization,

transfer, and rehydration of the agent object.

[0128] As used herein, the term “policy reference field” refers to a structural linkage within an

agent object that identifies one or more governing policies applicable to the agent. Policies identified

by the policy reference field define constraints on permissible mutation, delegation authority,

propagation scope, trust thresholds, or semantic behavior. Policies identified by the policy reference

field may resolve to internal policy objects, external identifiers, or decentralized policy aliasing

mechanisms, provided such references are verifiable during validation.

[0129] As used herein, the term “mutation descriptor field” or “mutation field” refers to a

semantic component that defines authorized transformation pathways for an agent object. Mutation

descriptors specify conditions, triggers, constraints, or bounds under which the agent’s intent, role,

or structural composition may evolve. Mutation descriptors operate in conjunction with policies

identified by the policy reference field, context metadata, and lineage constraints to ensure

controlled semantic evolution.

[0130] The term “lineage field” refers to a canonical semantic field that references one or more

semantic ancestors of an agent object. The lineage field forms part of a directed semantic graph that

preserves provenance, trust inheritance, policy continuity, and mutation history across agent

 28 Attorney Docket No. 20596-006USU1

generations. Lineage references enable deterministic reconstruction of semantic evolution without

reliance on centralized registries.

[0131] As used herein, the term “partial agent,” “partial semantic agent,” “partial agent object,”

or “partial semantic agent object” refers to a semantic agent object that contains fewer than all

canonical semantic fields but remains structurally valid under the cognition-compatible schema. A

partial agent may participate in validation, delegation, or interoperability through fallback inference,

structural scaffolding, or lineage-based resolution as disclosed herein.

[0132] As used herein, the term “structural scaffolding” refers to a deterministic, schema-

defined resolution process by which missing or degraded canonical fields in a partial agent are

inferred, reconstructed, or defaulted using available context metadata, policies identified by the

policy reference field, lineage anchors, or environmental constraints. Structural scaffolding does not

introduce semantic authority beyond that implied by existing fields and records all resolutions as

trace outcomes.

[0133] As used herein, the term “fallback inference” refers to rule-bound, schema-defined

resolution logic applied when one or more canonical semantic fields are absent from a semantic

agent object. Fallback inference operates exclusively under constraints imposed by available

canonical semantic fields, policies identified by the policy reference field, and lineage anchors, and

does not include probabilistic reasoning, learned model inference, or heuristic approximation unless

explicitly authorized by governing policy.

[0134] As used herein, the term “semantic template” refers to a predefined canonical field

arrangement that defines a class or role of agent objects. Semantic templates specify required and

optional fields, coherence rules, and validation thresholds for standardized agent instantiation and

evolution.

[0135] As used herein, the term “contractual structure” refers to schema-level constraints

associated with a semantic template that govern validation outcomes, fallback behavior, mutation

eligibility, and delegation authority. Contractual structures enforce governance without prescribing

procedural execution logic.

[0136] As used herein, the term “trace outcome” refers to a recorded semantic event stored

within an agent’s memory field, including validation decisions, mutation events, scaffolding

 29 Attorney Docket No. 20596-006USU1

resolutions, or delegation actions. Trace outcomes preserve a verifiable history of semantic

evolution.

[0137] As used herein, the term “serialization” refers to the encoding of a semantic agent object

into a structured, portable representation suitable for transmission, storage, and reconstruction across

distributed or stateless environments, while preserving canonical field boundaries and validation

metadata.

[0138] As used herein, the term “stateless compatibility” refers to the ability of a serialized

agent object to be validated, interpreted, and evolved without reliance on external session memory,

synchronized execution state, or centralized coordination.

[0139] As used herein, the term “schema governance” refers to decentralized enforcement of

semantic integrity, mutation constraints, and lineage continuity through structural validation of agent

objects rather than through centralized authorities.

[0140] As used herein, the term “field provenance” refers to the ability to trace the origin,

mutation history, and validation context of each canonical semantic field within an agent object

through lineage references, memory traces, and optional cryptographic binding.

[0141] As used herein, the term “deterministic” refers to schema-deterministic behavior in

which identical semantic agent object structures, evaluated under identical policy references and

contextual parameters, yield identical validation, mutation-eligibility, and structural scaffolding

outcomes. Schema-deterministic behavior is independent of execution environment, runtime

scheduling, transport medium, or procedural execution order.

[0142] As used herein, the term “structural validation” refers to validation performed on a

semantic agent object prior to any semantic execution, mutation, delegation, or propagation, based

solely on internal structure, field presence, and field coherence of the semantic agent object, without

reliance on procedural execution results or external session state.

[0143] As used herein, the term “policy” refers to a machine-resolvable governance artifact

referenced by the policy reference field that declaratively defines constraints on permissible

mutation, delegation, propagation, or semantic scope of a semantic agent object. Policy evaluation is

structural and declarative and is not dependent on execution history external to the semantic agent

object.

 30 Attorney Docket No. 20596-006USU1

[0144] As used herein, the term “cognition-native” refers to a computing paradigm in which

semantic reasoning, memory continuity, governance constraints, identity, and evolutionary state are

represented as primary architectural substrates of a computing system, rather than as emergent or

incidental properties of procedural execution, application logic, or runtime control flow. In a

cognition-native system, cognitive state persists across execution environments, transport layers, and

time through structurally defined representations that may be validated, governed, and evolved

independently of any particular process, session, or execution engine.

[0145] As used herein, the term “cognition-compatible” refers to structural compliance with, or

interoperability relative to, a cognition-native computing paradigm. A cognition-compatible system,

component, or data object is not itself required to instantiate a full cognition-native execution

environment, but is structured such that it may participate in, interoperate with, or be validated by

cognition-native systems. In particular, a cognition-compatible semantic agent object maintains

structural properties that enable persistence, validation, governance, and semantic continuity

regardless of whether it is deployed within a cognition-native platform or within a non-cognition-

native computing environment.

[0146] As used herein, references to ‘cognitive systems,’ ‘distributed cognitive systems,’ or

‘cognitive infrastructures’ refer to systems that implement or interoperate with cognition-native or

cognition-compatible components, and do not require full cognition-native execution.

[0147] As used herein, “semantic execution” refers solely to the interpretation or consideration

of a semantic agent object following structural validation, and does not encompass runtime

scheduling, procedural control flow, or execution lifestyle management.

[0148] As used herein, “structurally coherent,” with respect to a semantic agent object, means

that the semantic agent object includes one or more canonical semantic fields and satisfies schema-

defined structural rules that render the semantic agent object admissible as a valid agent

representation based solely on information embedded within the semantic agent object, without

reliance on external state, execution context, or semantic interpretation.

[0149] As used herein, “structurally compatible,” with respect to two or more canonical

semantic fields within a semantic agent object, means that the canonical semantic fields are

permitted to coexist within the same semantic agent object under schema-defined structural rules,

 31 Attorney Docket No. 20596-006USU1

including satisfaction of required cross-field dependencies and reference constraints, as determined

without interpreting semantic meaning, execution outcomes, or runtime behavior.

 32 Attorney Docket No. 20596-006USU1

What is claimed is:

1. A cognition-compatible semantic agent object system, comprising:

a semantic agent object stored in a non-transitory computer-readable medium, the semantic

agent object comprising one or more embedded canonical semantic fields selected from

the group consisting of an intent field, a context block, a memory field, a policy reference

field, a mutation descriptor field, and a lineage field; and

a node configured to interact with the semantic agent object and including a set of

instructions that when executed determine whether the semantic agent object is

structurally coherent based on presence of the one or more canonical semantic fields and

whether the one or more canonical semantic fields, to the extent present, are structurally

compatible based on a set of rules that determine whether those fields are permitted to

coexist,

wherein whether the semantic agent object is structurally coherent and whether the one or

more canonical semantic fields are structurally compatible are determined based only on

information embedded within the semantic agent object.

2. The system of claim 1, wherein the semantic agent object is a partial semantic agent

comprising fewer than all of the group of canonical semantic fields and wherein the partial

semantic agent is determined to be structurally valid under schema-defined validation rules.

3. The system of claim 2, wherein the partial semantic agent comprises at least two canonical

semantic fields.

4. The system of claim 1, wherein the intent field encodes a declarative semantic objective

without specifying procedural execution steps.

5. The system of claim 1, wherein the policy reference field identifies one or more governing

policies constraining permissible mutation, delegation, or semantic scope of the semantic agent

object.

6. The system of claim 1, wherein the mutation descriptor field defines authorized transformation

pathways for modifying one or more canonical semantic fields.

7. The system of claim 1, wherein the memory field is configured to record trace outcomes

corresponding to validation events, mutation authorizations, scaffolding resolutions, or

delegation actions.

8. The system of claim 1, wherein the lineage field references one or more prior semantic agent

objects, forming a directed semantic ancestry graph.

 33 Attorney Docket No. 20596-006USU1

9. The system of claim 1, wherein determining whether the semantic agent object is structurally

coherent does not rely on external session state, centralized registries, or synchronized execution

context.

10. The system of claim 2, further comprising a structural scaffolding mechanism configured to

infer, reconstruct, or default missing canonical semantic fields in accordance with policies

identified by the policy reference field, context metadata, or lineage anchors.

11. The system of claim 10, wherein inferred or defaulted canonical semantic fields are

recorded as trace outcomes in the memory field.

12. The system of claim 1, wherein the semantic agent object is serializable and reconstructable

across stateless or distributed computing environments while preserving structural coherence.

13. The system of claim 1, wherein semantic roles of the semantic agent object are determined

based on structural combinations of the one or more canonical semantic fields used to determine

whether the semantic agent object is structurally coherent and not externally assigned identifiers.

14. The system of claim 1, wherein whether the semantic agent object is structurally coherent is

determined prior to any semantic execution, mutation, delegation, or propagation, such that

eligibility for semantic participation is determined as a function of structural coherence of the

semantic agent object rather than as a result of runtime execution.

15. The system of claim 14, wherein semantic participation by the semantic agent object is

prohibited unless the semantic agent object satisfies schema-defined structural validation rules.

16. The system of claim 8, wherein references in the lineage field are sufficient to verify, under

schema-defined rules, provenance, trust inheritance, and mutation authorization across

successive semantic agent objects.

17. The system of claim 1, further including mutation constraints for the semantic agent object

based on whether proposed transformations fall outside mutation limitations defined by the

mutation descriptor field and the policy reference field.

18. A non-transitory computer-readable medium storing instructions that, when executed by

one or more processors, cause the processors to implement the system of claim 1.

19. A computer implanted method for validating cognition-compatible semantic agent objects,

the method comprising:

determining whether a semantic agent object is structurally valid based on presence and

coherence of a plurality of canonical semantic fields embedded within the semantic agent

object, the canonical semantic fields including a policy reference field, a memory field,

and a mutation descriptor field;

 34 Attorney Docket No. 20596-006USU1

determining mutation eligibility of the semantic agent object using the policy reference field

and the mutation descriptor field; and

recording validation or mutation outcomes within the memory field,

wherein determining whether the semantic agent object is structurally valid, determining

mutation eligibility, and recording validation is performed without prescribing execution

order, scheduling, or runtime control.

20. The method of claim 19, further comprising resolving, when the semantic agent object is a

partial semantic agent that does not include one or more of the plurality of canonical semantic

fields by inferring missing canonical semantic fields using structural scaffolding.

21. The method of claim 19, further including preserving semantic continuity through lineage

references embedded within the semantic agent object.

22. The method of claim 19, further including serializing, transmitting, and reconstructing the

semantic agent object across stateless computing environments.

23. The method of claim 19, wherein determining whether the semantic agent object is

structurally valid includes applying a set of schema-defined structural rules that confirm the

presence of one or more of the plurality of canonical semantic fields and determining whether

the canonical semantic fields, if present, are internally consistent and admissible under the

schema-defined structural rules.

24. The method of claim 23, wherein applying the set of schema-defined structural rules

includes determining whether mutation descriptors reference an applicable policy field, lineage

references resolve to a prior state, and memory entries are compatible with mutation scope.

25. The method of claim 24, wherein determining whether mutation descriptors reference an

applicable policy field, lineage references resolve to a prior state, and memory entries are

compatible with mutation scope is completed without interpreting semantic correctness or

execution results.

26. The method of claim 19, further including enforcing governance of semantic evolution at

the data-object level through structural validation.

 35 Attorney Docket No. 20596-006USU1

Abstract

Systems and methods are disclosed for defining cognition-compatible semantic agent objects

structured to support memory-bearing, policy-governed, and traceable semantic execution. Each

semantic agent object comprises one or more canonical semantic fields including an intent field, a

context block, a memory field, a policy reference field, a mutation descriptor field, and a lineage

field. Structural validation is performed at the data-object level based on field presence and

coherence, independent of any particular execution environment. Partial semantic agents comprising

subsets of canonical fields are supported through deterministic fallback inference and structural

scaffolding. Authorized mutation pathways are governed jointly by mutation descriptors and policies

identified by the policy reference field, while lineage fields preserve provenance and continuity

across agent evolution. Semantic agent objects are serializable and operable across stateless and

distributed computing environments, enabling decentralized semantic execution, governance

enforcement, and auditability without reliance on centralized orchestration or persistent runtime

state.

25427466.1

